Protection by DHA of early hippocampal changes in diabetes: possible role of CREB and NF-κB.

Neurochem Res

Department of Fisiología, Farmacología and Toxicología, Universidad CEU Cardenal Herrera, Av. Seminario S/n, 46113 Moncada, Valencia, Spain.

Published: January 2012

The mechanisms underlying diabetic encephalopathy, are only partially understood. In this study, we try to address the mechanisms of diabetes induced damage and whether docosahexaenoic acid (DHA) could attenuate the degenerative changes in diabetic hippocampus in a rodent model of diabetes. Diabetes was induced in rats by an intraperitoneal injection of streptozotocin. Animals were divided into the following experimental groups: control rats; control animals treated with DHA; untreated diabetic rats; diabetic rats treated with insulin; diabetic rats treated with DHA; diabetic rats treated with insulin and DHA. At the end of week 12, rats were killed and one of the hemispheres was cryosectioned and the other was dissected and hippocampi homogenized. The number of bromodeoxyuridine positive cells in the hippocampus of diabetic rats was decreased, and the latency time to find the platform in the Morris Water maze was significantly increased in the diabetic rats when compared to controls. No changes where observed in the expression of p21 in the hippocampus of control and diabetic rats. Biochemical markers of oxidative stress were altered in hippocampus of diabetic rats, and NFκB-positive cells were increased in the hippocampus of diabetic rats when compared to controls. Treatment with DHA, or the combination of DHA with insulin, significantly restored to control levels all the values mentioned above. Our findings confirm a pivotal role for oxidative stress as well as NF-κB, but not p21, in diabetes-induced hippocampal impairments. Administration of DHA as well as insulin prevented the changes induced by diabetes in hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-011-0588-xDOI Listing

Publication Analysis

Top Keywords

diabetic rats
36
rats
12
rats treated
12
hippocampus diabetic
12
diabetic
11
diabetes induced
8
treated dha
8
treated insulin
8
rats compared
8
compared controls
8

Similar Publications

Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.

View Article and Find Full Text PDF

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review.

Nutrients

December 2024

Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.

Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.

View Article and Find Full Text PDF

Type 2 diabetes (T2D), the most common form, is marked by insulin resistance and β-cell failure. β-cell dysfunction under high-glucose-high-lipid (HG-HL) conditions is a key contributor to the progression of T2D. This study evaluates the comparative effects of 10 nM semaglutide, 10 nM tirzepatide, and 1 mM metformin, both alone and in combination, on INS-1 β-cell maintenance and function under HG-HL conditions.

View Article and Find Full Text PDF

Insulin-Sensitizing Properties of Decoctions from Leaves, Stems, and Roots of L.

Molecules

December 2024

Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!