Developmental dysplasia of the hip (DDH) is a common cause of elevated contact stress and early onset osteoarthritis (OA). We hypothesized that adaptation to focal loading during postnatal development would result in signature changes to the shape of the femoral head secondary center of ossification (SCO). SCO shape was evaluated in a canine model of DDH at ages 14 and 32 weeks. The evolving 3D morphology of the SCO was captured using serial quantitative computed tomography. A discrete medial representation shape model was fit to each SCO and served as the basis for quantitative thickness and bending measurements. Shape measurements were tested for associations with hip subluxation and degeneration. At 32 weeks, the SCO was thinner (flatter) in the perifoveal region, the site of focal loading; a greater bend to the SCO was present lateral to the site of thinning; SCO thinning and bending were associated with less femoral head coverage and with a higher probability of degeneration. Shape changes were not detected at 14 weeks. Measurement and visualization of SCO shape changes due to altered loading may provide a basis for identifying hips at risk of early onset OA and a tool for surgical planning of hip restructuring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-011-0393-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!