Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs) were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay) widely used for the detection of Transitional Cell Carcinoma (TCC) of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN) and on Formalin Fixed Paraffin Embedded (FFPE) tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164716 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024237 | PLOS |
Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain.
View Article and Find Full Text PDFImaging-based spatial transcriptomics (ST) is evolving rapidly as a pivotal technology in studying the biology of tumors and their associated microenvironments. However, the strengths of the commercially available ST platforms in studying spatial biology have not been systematically evaluated using rigorously controlled experiments. In this study, we used serial 5-m sections of formalin-fixed, paraffin-embedded surgically resected lung adenocarcinoma and pleural mesothelioma tumor samples in tissue microarrays to compare the performance of the single cell ST platforms CosMx, MERFISH, and Xenium (uni/multi-modal) platforms in reference to bulk RNA sequencing, multiplex immunofluorescence, GeoMx Digital Spatial Profiler, and hematoxylin and eosin staining data for the same samples.
View Article and Find Full Text PDFInt J Surg Pathol
January 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The diagnosis of primary leiomyosarcoma (LMS) of bone is generally established based on integrative findings of morphologic features, immunohistochemical staining, and clinical and radiological findings. There are no specific genetic alterations that can be used to confirm the diagnosis of LMS in challenging diagnoses of bone sarcomas with myogenic differentiation. In this study, we assessed the utility of a DNA methylation-based classifier as an ancillary diagnostic tool for subclassifying bone sarcomas with myogenic differentiation.
View Article and Find Full Text PDFJ Transl Med
January 2025
Tumour Biology and Immunology Laboratory, Research Branch, Sidra Medicine, Doha, Qatar.
Background: FFPE tissue samples are commonly used in biomedical research and are a valuable source for next-generation sequencing in oncology, however, extracting RNA from these samples can be difficult the quantity and quality achieved can impact the downstream analysis. This study compared the effectiveness of seven different commercially available RNA extraction kits specifically designed for use with FFPE samples in terms of the quantity and quality of RNA recovered.
Methods: This study used 9 samples of FFPE tissue from three different types of tissue (Tonsil, Appendix and lymph node of B-cell lymphoma) to evaluate RNA extraction methods.
Anat Sci Int
January 2025
Department of Anatomy, Faculty of Medicine, Ege University, Izmir, Turkey.
The aim of this study was to define the branching patterns and innervation regions of the superficial branch of the radial nerve and the dorsal branch of the ulnar nerve and to evaluate the distance from 1-2, 3-4, 4-5, midcarpal radial, midcarpal ulnar, dorsal radioulnar joint, 6-radial, 6-ulnar dorsal arthroscopy portals to certain landmarks on the dorsal surface of the hand and wrist. Forty hands and wrists of 20 formalin-fixed intact cadavers without any known pathology, surgical scars or trauma were examined in the Macroscopy Laboratory of Ege University Faculty of Medicine, Department of Anatomy. Arthroscopy portals were placed using a dorsal approach to the wrist in the dissection method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!