Molecular structures of the isolated tetrahedral oxovanadium(IV) and bridged μ-oxo-divanadium(IV) complexes hosted by the clusters mimicking surfaces of amorphous silica-based materials were investigated using density functional theory (DFT) calculations. Principal values of the g and A tensors for the monomer vanadyl species were obtained using the coupled-perturbed DFT level of theory and the spin-orbit mean-field approximation (SOMF). Magnetic exchange interaction for the μ-oxo bridged vanadium(IV) dimer was investigated within the broken symmetry approach. An antiferromagnetic coupling of the individual magnetic moments of the vanadium(IV) centers in the [VO-O-VO](2+) bridges was revealed and discussed in detail. The coupling explains pronounced decrease of the electron paramagnetic resonance signal (EPR) intensity, observed for the reduced VO(x)/SiO(2) samples with the increasing coverage of vanadia, in terms of transformation of the paramagnetic monomer species into the dimers with S = 0 ground state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143325 | PMC |
http://dx.doi.org/10.1007/s00723-011-0213-9 | DOI Listing |
J Pharm Sci
January 2025
Drug Product Design, Pfizer, Inc., Cambridge, MA, United States.
A huge majority of new chemical entities (NCEs) advancing through the drug discovery pipeline often have poor aqueous solubility. This requires formulation scientists to search for solubility enhancement strategies, within the constraints of time and material. To address these challenges, a strategic platform formulation is often required for a rapid compound screening to enable early exploratory PK and toxicology studies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China.
The growing world population and increasing life expectancy are driving the need to improve the quality of blood transfusion, organ transplantation, and preservation. Here, to improve the ability of red blood cells (RBCs) for normothermic machine perfusion, a biocompatible blood silicification approach termed "shielding-augmenting RBC-in-nanoscale amorphous silica (SARNAS)" has been developed. The key to RBC surface engineering and structure augmentation is the precise control of the hydrolysis form of silicic acid to realize stabilization of RBC within conformal nanoscale silica-based exoskeletons.
View Article and Find Full Text PDFJ Mater Chem B
September 2024
COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
Bacterial diseases caused by superbugs are expected to be the main cause of death worldwide within a decade as a consequence of the resistance they are acquiring to the antibiotics currently in use, therefore, the field of new antibacterial treatments is currently being thoroughly studied. The present work focuses on the synthesis, functionalization, characterization and antibacterial behaviour of different systems based on three different silica-based nanostructured materials (MSN, mesoporous silica nanoparticles, SBA-15 Santa Barbara amorphous-15 and FSP fibrous slica nanoparticles) which serve as scaffolds for the support of different platforms to target and treat bacterial diseases and biofilm formation. Thus, (3-carboxypropyl)triphenylphosphonium bromide (PPh) and a cytotoxic organotin(IV) fragment (Sn) have been incorporated in the silica-based materials to study their potential activity in different antibacterial applications.
View Article and Find Full Text PDFJ Pharm Sci
October 2024
School of Chemistry, South China Normal University, Key Laboratory of Process Control and Quality Evaluation of Chiral Drugs, Guangdong Provincial Drug Administration, Guangzhou Key Laboratory of Biomedical Analytical Chemistry, Guangzhou 510006, China. Electronic address:
Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed.
View Article and Find Full Text PDFMembranes (Basel)
July 2024
Institute for Technical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
This study introduces an innovative approach to designing membranes capable of separating CO from industrial gas streams at higher temperatures. The novel membrane design seeks to leverage a well-researched, high-temperature CO adsorbent, hydrotalcite, by transforming it into a membrane. This was achieved by combining it with an amorphous organo-silica-based matrix, extending the polymer-based mixed-matrix membrane concept to inorganic compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!