Background: Recently, anatomic anterior cruciate ligament (ACL) reconstruction is emphasized to improve joint laxity and to potentially avert initiation of cartilage degeneration. There is a paucity of information on the efficacy of ACL reconstructions by currently practiced tunnel creation techniques in restoring normal joint laxity.
Study Design: Controlled laboratory study.
Hypothesis: Anterior cruciate ligament reconstruction by the anteromedial (AM) portal technique, outside-in (OI) technique, and modified transtibial (TT) technique can equally restore the normal knee joint laxity and ACL forces.
Methods: Eight fresh-frozen human cadaveric knee specimens were tested using a robotic testing system under an anterior tibial load (134 N) at 0°, 30°, 60°, and 90° of flexion and combined torques (10-N·m valgus and 5-N·m internal tibial torques) at 0° and 30° of flexion. Knee joint kinematics, ACL, and ACL graft forces were measured in each knee specimen under 5 different conditions (ACL-intact knee, ACL-deficient knee, ACL-reconstructed knee by AM portal technique, ACL-reconstructed knee by OI technique, and ACL-reconstructed knee by TT technique).
Results: Under anterior tibial load, no significant difference was observed between the 3 reconstructions in terms of restoring anterior tibial translation (P > .05). However, none of the 3 ACL reconstruction techniques could completely restore the normal anterior tibial translations (P < .05). Under combined tibial torques, both AM portal and OI techniques closely restored the normal knee anterior tibial translation (P > .05) at 0° of flexion but could not do so at 30° of flexion (P < .05). The ACL reconstruction by the TT technique was unable to restore normal anterior tibial translations at both 0° and 30° of flexion under combined tibial torques (P < .05). Forces experienced by the ACL grafts in the 3 reconstruction techniques were lower than those experienced by normal ACL under both the loading conditions.
Conclusion: Anterior cruciate ligament reconstructions by AM portal, OI, and modified TT techniques are biomechanically comparable with each other in restoring normal knee joint laxity and in situ ACL forces.
Clinical Relevance: Anterior cruciate ligament reconstructions by AM portal, OI, and modified TT techniques result in similar knee joint laxities. Technical perils and pearls should be carefully considered before choosing a tunnel creating technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740363 | PMC |
http://dx.doi.org/10.1177/0363546511420810 | DOI Listing |
Purpose: Tibial rotational deformity is a known risk factor for patellofemoral joint (PFJ) disorders. However, it is commonly associated with other abnormalities which affect the PFJ. The purpose of this study was to describe the prevalence of associated factors known to affect PFJ in patients undergoing rotational tibial osteotomy and their implication for the correction level.
View Article and Find Full Text PDFCardiovasc Res
December 2024
Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.
View Article and Find Full Text PDFArthrosc Tech
December 2024
Department for Orthopedics and Trauma Surgery, Martin Luther Hospital Berlin, Berlin, Germany.
Indication for this hemi-wedge high tibial osteotomy is the combination of medial osteoarthritis or cartilage damage, varus deformity of >10°, and medial proximal tibial angle of <80°. The proximal lateral tibia is exposed via a skin incision of approximately 10 cm length between the tibial tuberosity and the head of the fibula. After detachment of the anterior tibial muscle, a first oblique guidewire marks the main osteotomy plane and a second guidewire marks the hemi-wedge.
View Article and Find Full Text PDFArthrosc Tech
December 2024
Department of Orthopaedics, University Hospital of Florence - A.O.U. Careggi, Florence, Italy.
Revision of anterior cruciate ligament reconstruction presents various challenges not encountered in the primary settings, including malpositioned tunnels, tunnel widening, and the lack of consensus on the ideal graft to be used. This Technical Note describes a one-stage anterior cruciate ligament reconstruction revision using a bone-patellar tendon-bone autograft combined with lateral extra-articular tenodesis. This technique represents the ideal approach to tackle complex revision cases primarily characterized by tibial and femoral tunnel osteolysis and rotational knee instability.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Mayo Clinic Arizona Department of Orthopedic Surgery, Phoenix, Arizona, USA.
Background: The Latarjet and other bony augmentation procedures are commonly used to treat anterior shoulder instability in the setting of significant glenoid bone loss. Although several fixation strategies have been reported, the biomechanical strength of these techniques remains poorly understood.
Purpose: To perform a systematic review of the biomechanical strength of glenoid bony augmentation procedures for anterior shoulder instability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!