The MYST HAT Sas2 is part of the SAS-I complex that acetylates histone H4 lysine 16 (H4 K16Ac) and blocks the propagation of heterochromatin at the telomeres of Saccharomyces cerevisiae. In this study, we investigated Sas2-mediated H4 K16Ac on a genome-wide scale. Interestingly, H4 K16Ac loss in sas2Δ cells outside of the telomeric regions showed a distinctive pattern in that there was a pronounced decrease of H4 K16Ac within the majority of open reading frames (ORFs), but little change in intergenic regions. Furthermore, regions of low histone H3 exchange and low H3 K56 acetylation showed the most pronounced loss of H4 K16Ac in sas2Δ, indicating that Sas2 deposited this modification on chromatin independently of histone exchange. In agreement with the effect of Sas2 within ORFs, sas2Δ caused resistance to 6-azauracil, indicating a positive effect on transcription elongation in the absence of H4 K16Ac. In summary, our data suggest that Sas2-dependent H4 K16Ac is deposited into chromatin independently of transcription and histone exchange, and that it has an inhibitory effect on the ability of PolII to travel through the body of the gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245914PMC
http://dx.doi.org/10.1093/nar/gkr649DOI Listing

Publication Analysis

Top Keywords

histone exchange
16
independently transcription
8
transcription histone
8
chromatin independently
8
k16ac
7
histone
5
genome-wide k16
4
k16 acetylation
4
acetylation sas-i
4
sas-i deposited
4

Similar Publications

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

A complex interplay between histone variants and DNA methylation.

J Exp Bot

January 2025

Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France.

Nucleosomes, the chromatin building blocks, play an important role in controlling DNA and chromatin accessibility. Nucleosome remodeling and the incorporation of distinct histone variants confer unique structural and biochemical properties, influencing the targeting of multiple epigenetic pathways, particularly DNA methylation. This stable epigenetic mark suppresses transposable element expression in plants and mammals, serving as an additional layer of chromatin regulation.

View Article and Find Full Text PDF

Interplay between genetics and epigenetics in lung fibrosis.

Int J Biochem Cell Biol

January 2025

Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK. Electronic address:

Lung fibrosis, including idiopathic pulmonary fibrosis (IPF), is a complex and devastating disease characterised by the progressive scarring of lung tissue leading to compromised respiratory function. Aberrantly activated fibroblasts deposit extracellular matrix components into the surrounding lung tissue, impairing lung function and capacity for gas exchange. Both genetic and epigenetic factors have been found to play a role in the pathogenesis of lung fibrosis, with emerging evidence highlighting the interplay between these two regulatory mechanisms.

View Article and Find Full Text PDF

Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression. We previously demonstrated that serotonylation and dopaminylation of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour.

View Article and Find Full Text PDF

Aim: The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions.

Methods: We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks.

Results: Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!