Manganese (Mn)-enhanced magnetic resonance imaging (MEMRI) is an emerging technique for visualizing neuronal pathways and mapping brain activity modulation in animal models. Spatial and intensity normalizations of MEMRI images acquired from different subjects are crucial steps as they can influence the results of groupwise analysis. However, no commonly accepted procedure has yet emerged. Here, a normalization method is proposed that performs both spatial and intensity normalizations in a single iterative process without the arbitrary choice of a reference image. Spatial and intensity normalizations benefit from this iterative process. On one hand, spatial normalization increases the accuracy of region of interest (ROI) positioning for intensity normalization. On the other hand, improving the intensity normalization of the different MEMRI images leads to a better-averaged target on which the images are spatially registered. After automatic fast brain segmentation and optimization of the normalization process, this algorithm revealed the presence of Mn up to the posterior entorhinal cortex in a tract-tracing experiment on rat olfactory pathways. Quantitative comparison of registration algorithms showed that a rigid model with anisotropic scaling is the best deformation model for intersubject registration of three-dimensional MEMRI images. Furthermore, intensity normalization errors may occur if the ROI chosen for intensity normalization intersects regions where Mn concentration differs between experimental groups. Our study suggests that cross-comparing Mn-injected animals against a Mn-free group may provide a control to avoid bias introduced by intensity normalization quality. It is essential to optimize spatial and intensity normalization as the detectability of local between-group variations in Mn concentration is directly tied to normalization quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2011.07.014DOI Listing

Publication Analysis

Top Keywords

intensity normalization
28
spatial intensity
20
memri images
16
intensity normalizations
12
normalization
11
intensity
10
normalization memri
8
rat olfactory
8
olfactory pathways
8
iterative process
8

Similar Publications

The cortical tracking of the acoustic envelope is a phenomenon where the brain's electrical activity, as recorded by electroencephalography (EEG) signals, fluctuates in accordance with changes in stimulus intensity (the acoustic envelope of the stimulus). Understanding speech in a noisy background is a key challenge for people with hearing impairments. Speech stimuli are therefore more ecologically valid than clicks, tone pips, or speech tokens (e.

View Article and Find Full Text PDF

Introduction: Under the background that economic policy uncertainty tends to be normal, the innovation behavior of enterprises can cope with the cost impact brought by economic policy uncertainty.

Methods: Based on the relevant data of China's A-share pharmaceutical listed companies from 2015 to 2022, this paper empirically studied the relationship between economic policy uncertainty and firm innovation by using fixed-effect model, intermediary model, instrumental variable method and two-step method, and investigated the mechanism effects of financialization, executive compensation and government subsidies.

Conclusion: Economic policy uncertainty significantly increases the innovation intensity of enterprises.

View Article and Find Full Text PDF

Purpose: The present review investigates the responses of heart rate variability indices following high-intensity interval aerobic exercise, comparing it with moderate-intensity continuous exercise in adults, with the aim of informing clinical practice.

Methods: Searches were conducted in four databases until March 2023. Eligible studies included randomized controlled trials that assessed heart rate variability indices such as the standard deviation of normal-to-normal heartbeat intervals (SDNN), the root mean square of successive differences (RMSSD), the proportion of the number of pairs of successive normal-to-normal (NN or R-R) intervals that differ by more than 50 ms (NN50) divided by the total number of NN intervals (pNN50), power in high frequency range (HF), power in low frequency range (LF), and LF/HF before and after high-intensity interval and moderate-intensity continuous aerobic exercise.

View Article and Find Full Text PDF

Whole slide imaging (WSI) has transformed diagnostic medicine, particularly in the field of cancer diagnosis and treatment. The use of deep learning algorithms for predicting WSIs has opened up new avenues for advanced medical diagnostics. Additionally, stain normalization can reduce the color and intensity variations present in WSI from different hospitals.

View Article and Find Full Text PDF

Background: Renal fibrosis is strongly correlated with renal functional outcomes. Therefore, this is a significant finding in determining renal prognosis. There are various reports on the imaging evaluation of renal fibrosis, but these are not well established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!