We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2011.08.003DOI Listing

Publication Analysis

Top Keywords

lamb wave
20
flat-bottom hole
16
wave scattering
12
frequency-thickness regions
12
multiple-mode lamb
8
elastodynamic finite
8
finite integration
8
integration technique
8
efit simulations
8
rounded rectangle
8

Similar Publications

An adversarial transformer for anomalous lamb wave pattern detection.

Neural Netw

January 2025

Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA. Electronic address:

Lamb waves are widely used for defect detection in structural health monitoring, and various methods are developed for Lamb wave data analysis. This paper presents an unsupervised Adversarial Transformer model for anomalous Lamb wave pattern detection by analyzing the spatiotemporal images generated by a hybrid PZT-scanning laser Doppler vibrometer (SLDV). The model includes the global attention and the local attention mechanisms, and both are trained adversarially.

View Article and Find Full Text PDF

Symmetrical wave ripples identified with NASA's Curiosity rover in ancient lake deposits at Gale crater provide a key paleoclimate constraint for early Mars: At the time of ripple formation, climate conditions must have supported ice-free liquid water on the surface of Mars. These features are the most definitive examples of wave ripples on another planet. The ripples occur in two stratigraphic intervals within the orbitally defined Layered Sulfate Unit: a thin but laterally extensive unit at the base of the Amapari member of the Mirador formation, and a sandstone lens within the Contigo member of the Mirador formation.

View Article and Find Full Text PDF

This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.

View Article and Find Full Text PDF

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

Corrosion damage presents significant challenges to the safety and reliability of connected vehicles. However, traditional non-destructive methods often fall short when applied to complex automotive structures, such as bolted lap joints. To address this limitation, this study introduces a novel corrosion monitoring approach using Lamb wave-based weighted fusion imaging methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!