1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3], the hormone of the vitamin D3 (D3) endocrine system, has been shown to influence malignant and normal cell proliferation/differentiation, while insulin (I) is known to be essential for liver growth. To investigate the influence of D3 on liver regeneration, the effect of the D status was studied in D-depleted rats (D-) pretreated with: G1, placebo (D-, hypocalcemic); G2, oral calcium only (D-, normocalcemic); G3, D3; and G4, 1,25-(OH)2D3. Two thirds hepatectomy (HX) or sham operation was performed, and regeneration was studied for 3 weeks. I response to glucose challenge and the hepatic I receptor were also studied. Cell volume, DNA, and RNA were not affected by pretreatment. After HX, the pattern of [3H]thymidine incorporation into DNA (P less than 0.003) and the cell labeling index (P less than 0.0001) were highly influenced by pretreatment and suggestive of an earlier appearance of the S phase of the cell cycle in the 1,25-(OH)2D3-treated compared to the D- hypocalcemic group. Furthermore, the mitotic index revealed a significant effect of pretreatment (P less than 0.01), with peak mitosis 24 h after HX in D3-treated and 1,25-(OH)2D3-treated rats compared to 30-36 h after HX in the D- groups. Liver weight restitution was impaired in D- rats (P less than 0.009) and is illustrated by the estimated time required to achieve 70% recovery of the resected liver mass, which was found to be 186 and 300 h in G1 and G2, and 154 and 107 h in G3 and G4. G1 rats had significantly higher glucose concentrations (fasting as well as after glucose injection) and reduced I secretion when challenged with glucose (P less than 0.001); they also had an upregulation in hepatic I receptor number (P less than 0.005) compared to calcium or D3-treated rats, while 1,25-(OH)2D3 led to a liver I receptor number similar to that found in hypocalcemic D- rats; the affinity of the I receptor was, however, only slightly changed by pretreatment (P less than 0.08). Our data indicate that in D depletion, hypocalcemia retards DNA synthesis and liver mass recovery, while normocalcemia contributes to DNA synthesis, but fails to sustain mitosis and compensatory liver growth to a level comparable to that found after D3 and/or 1,25-(OH)2D3 repletion. The observation that both D3 and 1,25-(OH)2D3 significantly promoted normal liver recovery after partial HX illustrates the role of the D endocrine system in normal cell physiology in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo-126-6-2947 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, Sana Kliniken Duisburg, Academic Teaching Hospital of University Duisburg-Essen, Duisburg, Germany.
Pineal gland lesions pose a significant surgical challenge due to the deep-seated nature of the pineal gland, as well as the limited field of view, and the complex vascular anatomy. The mainstay of surgical treatment, when necessary, is always histopathological clarity and gross total resection (GTR). We evaluate the surgical outcomes for pineal gland lesions, shedding light on functional outcomes, histological findings, and surgical complications.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.
Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.
View Article and Find Full Text PDFJ Binocul Vis Ocul Motil
January 2025
Department of Ophthalmology, Vanderbilt Eye Institute, Nashville, Tennessee.
Parinaud syndrome, also known as dorsal midbrain syndrome, is a condition affecting the dorsal midbrain region of the brainstem that presents with a triad of ophthalmic clinical findings, including upgaze paresis, convergence retraction nystagmus, and light-near dissociation. This case report will discuss the clinical presentation of Parinaud syndrome in a four-year-old patient who was seen in an out-patient clinic for intermittent exotropia 5 months after a suboccipital craniotomy resection of a pineal mass and ventriculoperitoneal (VP) shunt placement for associated hydrocephalus. Current literature is relatively sparse regarding the presentation of Parinaud syndrome in the pediatric population, with little known about prognosis and potential for recovery.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Sichuan Provincial Key Laboratory of Traditional Chinese Medicine Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs.
View Article and Find Full Text PDFIndian J Endocrinol Metab
October 2024
Department of Pathology, MGM Medical College, Navi Mumbai, Maharashtra, India.
Introduction: Thyroid neoplasms are the most common malignancy of the endocrine system, representing 3.8% of new cancer cases, and it is the ninth most common cancer overall. The immuno-histochemical marker Hector Battifora Mesotheilial-1 (HBME-1) is a monoclonal antibody that now finds its diagnostic utility as a positive marker for well-differentiated thyroid carcinomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!