Early, preemptive blockade of nerve growth factor (NGF)/tropomyosin receptor kinase A (TrkA) attenuates tumor-induced nerve sprouting and bone cancer pain. A critical unanswered question is whether late blockade of NGF/TrkA can attenuate cancer pain once NGF-induced nerve sprouting and neuroma formation has occurred. By means of a mouse model of prostate cancer-induced bone pain, anti-NGF was either administered preemptively at day 14 after tumor injection when nerve sprouting had yet to occur, or late at day 35, when extensive nerve sprouting had occurred. Animals were humanely killed at day 70 when, in vehicle-treated animals, significant nerve sprouting and neuroma formation was present in the tumor-bearing bone. Although preemptive and sustained administration (days 14-70) of anti-NGF more rapidly attenuated bone cancer nociceptive behaviors than late and sustained administration (days 35-70), by day 70 after tumor injection, both preemptive and late administration of anti-NGF significantly reduced nociceptive behaviors, sensory and sympathetic nerve sprouting, and neuroma formation. In this model, as in most cancers, the individual cancer cell colonies have a limited half-life because they are constantly proliferating, metastasizing, and undergoing necrosis as the parent cancer cell colony outgrows its blood supply. Similarly, the sensory and sympathetic nerve fibers that innervate the tumor undergo sprouting at the viable/leading edge of the parent tumor, degenerate as the parent cancer cell colony becomes necrotic, and resprout in the viable, newly formed daughter cell colonies. These results suggest that preemptive or late-stage blockade of NGF/TrkA can attenuate nerve sprouting and cancer pain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199350 | PMC |
http://dx.doi.org/10.1016/j.pain.2011.07.020 | DOI Listing |
Br J Anaesth
January 2025
Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
Compelling evidence has demonstrated that rehabilitation through physical exercise, a non-invasive and non-surgical intervention, enhances muscle reinnervation and motor recovery after peripheral nerve injury (PNI) by increasing muscle-derived brain-derived neurotrophic factor (BDNF) expression and triggering TrkB-dependent axonal plasticity. Adenosine has been widely acknowledged to trigger TrkB via A2A receptor (A2AR). Since motor nerve terminals co-express TrkBs and A2ARs and depolarizing conditions increase muscle release of BDNF and adenosine, we examined whether A2ARs activation could recapitulate the functional recovery benefits of intermittent exercise after a nerve crush.
View Article and Find Full Text PDFBackground: Autonomic innervation of the heart plays a pivotal role not only in regulating the heart rate but also in modulating the cardiac cell microenvironment via cell-cell interactions and influencing the heart's repair capabilities. Currently, the primary clinical approach for treating myocardial infarction (MI) is percutaneous coronary intervention. However, the myocardial salvage rate remains low for patients with advanced disease.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea.
Purpose: To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED).
Materials And Methods: Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure.
J Reconstr Microsurg
December 2024
Division of Reconstructive Microsurgery Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
Background: High-level median or ulnar nerve injuries and repairs typically result in suboptimal re-innervation of distal muscles. Functioning Free Muscle Transplantation (FFMT) is increasingly recognized as an effective method to restore function in chronic muscle denervation cases. This study investigates the efficacy of using an additional FFMT, neurotized by lateral sprouting axons from a repaired high-level mixed nerve in the upper limb, to enhance distal hand function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!