The stable transcription factor ΔFosB is induced in the nucleus accumbens (NAc) by chronic exposure to several drugs of abuse, and transgenic expression of ΔFosB in the striatum enhances the rewarding properties of morphine and cocaine. However, the mechanistic basis for these observations is incompletely understood. We used a bitransgenic mouse model with inducible expression of ΔFosB in dopamine D(1) receptor/dynorphin-containing striatal neurons to determine the effect of ΔFosB expression on opioid and cannabinoid receptor signaling in the NAc. Results showed that mu opioid-mediated G-protein activity and inhibition of adenylyl cyclase were enhanced in the NAc of mice that expressed ΔFosB. Similarly, kappa opioid inhibition of adenylyl cyclase was enhanced in the ΔFosB expressing mice. In contrast, cannabinoid receptor-mediated signaling did not differ between mice overexpressing ΔFosB and control mice. These findings suggest that opioid and cannabinoid receptor signaling are differentially modulated by expression of ΔFosB, and indicate that ΔFosB expression might produce some of its effects via enhanced mu and kappa opioid receptor signaling in the NAc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261795PMC
http://dx.doi.org/10.1016/j.neuropharm.2011.08.046DOI Listing

Publication Analysis

Top Keywords

opioid cannabinoid
12
expression Δfosb
12
receptor signaling
12
Δfosb
10
cannabinoid receptor-mediated
8
receptor-mediated signaling
8
nucleus accumbens
8
Δfosb expression
8
cannabinoid receptor
8
signaling nac
8

Similar Publications

Background: The pervasiveness of drug culture has become evident in popular music and social media. Previous research has examined drug abuse content in both social media and popular music; however, to our knowledge, the intersection of drug abuse content in these 2 domains has not been explored. To address the ongoing drug epidemic, we analyzed drug-related content on Twitter (subsequently rebranded X), with a specific focus on lyrics.

View Article and Find Full Text PDF

Introduction: The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A receptor (AR) in the PVT in regulating pain sensation and non-opioid analgesia.

Method And Results: Specifically, AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA).

View Article and Find Full Text PDF

Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments.

Pharmacol Ther

December 2024

Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.. Electronic address:

G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance.

View Article and Find Full Text PDF

N-Palmitoylethanolamide enhances antinociceptive effect of tramadol in neuropathic rats.

Biomed Pharmacother

December 2024

Laboratory 7, "Pain and Analgesia", Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Sede Sur, Mexico City, Mexico.

The efficacy of opioids in the treatment of chronic pain is limited; however, the adverse effects they produce are considerable. N-palmitoylethanolamide (PEA), a bioactive lipid mediator with structural similarities to endocannabinoids, has exhibited notable anti-inflammatory and analgesic effects in preclinical models. The objective of this study was to investigate the antinociceptive properties, motor coordination (MC), and constipation effects of tramadol and PEA in combination within a neuropathic pain model.

View Article and Find Full Text PDF

Opioid use disorder is a public health problem that includes symptoms such as withdrawal syndrome and opioid-induced hyperalgesia. Currently, drugs to treat side effects of opioids also have undesirable effects, which lead to limitations. This study investigated the effect of a treatment with cannabidiol in morphine-induced hyperalgesia and withdrawal behavior in morphine-dependent rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!