Background: Recently, increased cardiac norepinephrine levels were observed in patients who were exposed to irregular stimulation during electrophysiological testing. The molecular mechanisms remain unclear. Intrinsic cardiac adrenergic (ICA) cells are present in mammalian hearts and contain catecholamine-synthesizing enzymes sufficient to produce biologically active norepinephrine levels. Thus, we aimed to investigate the expression of catecholamine-synthesizing enzymes by ICA cells exposed to irregular pacing.
Methods: Co-cultures of cardiomyocytes and ICA cells were exposed to irregular pacing for 48h (standard deviation (SD)=5%, 25% and 50% of mean cycle length) at a constant rate of 5Hz. The expression of catecholamine-synthesizing enzymes including tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DBH) were analyzed on mRNA and protein levels.
Results: First, immunolabeling identified ICA cells presenting TH and DBH staining around the cell nucleus. Irregular pacing with 25% SD at a constant rate of 5Hz significantly increased the expression of TH and DBH enzyme synthesis. Pharmacological approaches have shown that both metoprolol and losartan reversed the irregular pacing induced DBH increase, whereas the expression of TH was only blocked by metoprolol in a significant manner. Blockade of the endothelin-A receptor by BQ123 or the calcineurin-NFAT pathway by cyclosporine-A, 11R-VIVIT or FK506 revealed a potential role of both cascades in irregular pacing induced catecholamine-synthesizing enzyme expression.
Conclusions: ICA cells respond to irregular electrical activation with an increase in catecholamine-synthesizing enzymes. Drugs commonly used in clinical routine significantly influence the expression of TH and DBH by ICA cells via different signaling routes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2011.08.113 | DOI Listing |
Mater Today Bio
December 2024
Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
The treatment of large bone defects remains challenging due to the lack of spatiotemporal management of the immune microenvironment, inflammation response and bone remodeling. To address these issues, we designed and developed a nanoparticle/hydrogel hybrid system that can achieve the combined and sequential delivery of an anti-inflammatory factor (IL-10) and osteogenic drug (icariin, ICA). A photopolymerizable composite hydrogel was prepared by combining gelatin methacryloyl (GelMA) and heparin-based acrylated hyaluronic acid (HA) hydrogels containing IL-10, and poly(dl-lactide-co-glycolide) (PLGA)-HA nanoparticles loaded with ICA were incorporated into the composite hydrogels.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
The First Affiliated Hospital, Department of Function, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Indole-3-carboxaldehyde (ICA), a microbiota-derived tryptophan metabolite, has been reported to protect against atherosclerosis. However, the molecular mechanisms for its atheroprotective effect remain largely unknown. This study aimed to explore the influence of ICA on lipid accumulation and inflammatory response in THP-1 macrophage-derived foam cells.
View Article and Find Full Text PDFCell Calcium
December 2024
Cardiac Signaling Center of USC, MUSC and Clemson University, 68 President St BEB 306, Charleston, SC 29425, USA. Electronic address:
Rationale & Methods: While signaling of cardiac SR by surface membrane proteins (I & I) is well studied, the regulation of mitochondrial Ca by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.
Results: In voltage-clamped and TIRF-imaged cardiomyocytes, low Na induced SR Ca release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca contribution to low Na triggered SR Carelease.
ACS Nano
December 2024
Department of Materials Science and Engineering, Dankook University, 119 Dandae-ro, Cheonan 31116, South Korea.
Crystalline SnS accommodates Na ions through intercalation-conversion-alloying (ICA) reactions, exhibiting a natural potential for high energy storage, while its layered structure facilitates rapid charging. However, these intrinsic advantages are not fully realized in practical battery applications. Herein, utilizing an innovative integration of machine-learning-based thermodynamics, artificial-neural-network-assisted molecular dynamics, and density functional theory, specific solvents are demonstrated to effectively tailor the reaction pathways.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
There is a consensus that indigenous pigs in China are more resistant than modern commercial pigs in terms of disease resistance. Generally, the immune response is an important part of anti-disease capability; however, the related mechanism in pigs is largely puzzling. Here, the public transcriptome data of peripheral blood mononuclear cells (PBMCs) from Dapulian (Chinese local breed) and Landrace (Commercial breed) pigs after stimulation with polyinosinic-polycytidylic acid (poly I:C, a conventional reagent used for simulation of the viral infection) were reanalyzed, and the immune response mechanism in different pig breeds was investigated from a transcriptomic perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!