Fasciculations are characteristic features of amyotrophic lateral sclerosis (ALS), suggesting abnormally increased excitability of motor axons. Previous nerve excitability studies have shown reduced axonal potassium currents in ALS patients that may contribute to the hyperexcitability and thereby generation of fasciculations. To clarify changes in axonal ion channel expression in motor axons of ALS, we performed immunohistochemistry of potassium and sodium channels in the C7 and L5 ventral/dorsal roots obtained from five autopsy cases of sporadic ALS. Compared to controls, the immunoreactivity of potassium channels (Kv1.2) was markedly reduced in the ventral roots, but normal in the dorsal roots of all the ALS patients. Nodal sodium channel expression was not significantly different in ALS patients and control subjects. Our results show prominently reduced expression of axonal potassium channels, and provide the neuropathological and biological basis for decreased accommodative potassium currents in motor axons of ALS patients. The axonal hyperexcitability would lead to generation of fasciculations, and possibly enhances motor neuron death in ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2011.08.015DOI Listing

Publication Analysis

Top Keywords

als patients
16
axonal potassium
12
channel expression
12
motor axons
12
markedly reduced
8
reduced axonal
8
amyotrophic lateral
8
lateral sclerosis
8
als
8
potassium currents
8

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) is a chronic, progressive disease that affects both upper and lower motor neurons. Some physicians have used traditional Chinese therapies (TCT) to treat ALS. However, there has been no systematic review or meta-analysis to evaluate the effectiveness and safety of TCT interventions.

View Article and Find Full Text PDF

[Resilience as an integral component of action competence in internal medicine].

Inn Med (Heidelb)

January 2025

Medizinische Klinik II, Lehrstuhl für Integrierte Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Deutschland.

Physicians in internal medicine are exposed to high levels of stress. Conditions of chronic emotional fatigue and burnout are widespread. Resilience, the ability to cope with difficult situations and to adapt to adverse circumstances, is essential.

View Article and Find Full Text PDF

A 54-year-old man presented with increasing arthralgia and swelling of the metacarpophalangeal (MCP) joints II and III for approximately 2 years. He also reported morning stiffness and joint pain in both knees and feet.Both MCP joints II and III and the proximal interphalangeal joints II and III were tender without visible swelling.

View Article and Find Full Text PDF

VEXAS syndrome is a haemato-inflammatory disease caused by somatic UBA1 mutations and characterized by cytoplasmic vacuoles in myeloid and erythroid precursor cells. Although there is currently no standard treatment algorithm for VEXAS, patients are generally treated with anti-inflammatory therapies focused on symptom management, with only partial effectiveness. Hypomethylating agents (HMA) have shown promise in VEXAS patients with concomitant myelodysplastic syndrome (MDS), while the efficacy of HMA in VEXAS patients without MDS is largely unknown.

View Article and Find Full Text PDF

Objectives: Jitter analysis with concentric needle electrode of the thoracic 9 (T9) paraspinal muscle (PM), where the needle EMG examination at rest is difficult, was performed in both amyotrophic lateral sclerosis (ALS) patients and the controls.

Methods: For the T9 PM, both upper limit for mean and individual mean consecutive difference (MCD) values and spike numbers were calculated according to jitter values of pairs from controls. In addition to the descriptive statistics, differences between two groups and T9 PM needle EMG and jitter analysis findings of patients were compared (p = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!