Immune deficiency immediately following bone marrow transplantation (BMT) increases susceptibility to opportunistic infections as well as tumor relapse. Natural Killer (NK) cells play important roles in the resistance to virally infected and transformed cells. Interleukin (IL)-15 has been shown to be essential for NK cell development and survival. We administered human (h) IL-15 cDNA (pIL-15) via hydrodynamic delivery to murine recipients undergoing congenic BMT to determine its effects on NK cell reconstitution. Hydrodynamic pIL-15 delivery resulted in high levels of hIL-15 protein in the serum that lasted for several days and then quickly declined. The appearance of hIL-15 was followed by a significant increase of mature donor-derived NK cells within the bone marrow, spleens, and livers of the treated recipients. No accumulation of immature NK cell progenitors was observed. The NK cells from IL-15-treated recipients displayed an activated phenotype and were lytically active toward tumor targets in vitro to a similar degree as did those cells from recipients treated with control plasmid. This suggests that the predominant effect of IL-15 was a quantitative increase in total NK cell numbers and not qualitative changes in NK cell functions. No toxicities or adverse effects were observed. Studies performed in transplanted mice bearing renal carcinoma tumors demonstrated that this mode of hIL-15 gene delivery resulted in increased antitumor responses. These results support the use of cytokine gene transfer-based regimens as a platform to augment NK cell recovery after BMT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506429PMC
http://dx.doi.org/10.1016/j.bbmt.2011.08.023DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
hydrodynamic delivery
8
human il-15
8
il-15 cdna
8
natural killer
8
cell recovery
8
marrow transplantation
8
cell
7
cells
5
delivery human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!