This study aimed to evaluate the effects of different tapering angles of an immediately loaded wide-diameter implant on the stress/strain distribution in bone and implant after implant insertion in healed or fresh molar extraction sockets. A total of 10 finite element (FE) implant-bone models, including 8.1-mm diameter implant, superstructure, and mandibular molar segment, were created to investigate the biomechanical behavior of different implant taper angles in immediate and delayed placement conditions. The degrees of implant taper ranged from 2° to 14°, and the contact conditions between the immediately loaded implants and bone were set with frictional coefficients (μ) of 0.3 in the healed models and 0.1 in the extracted models. Vertical and lateral loading forces of 189.5 N were applied in all models. Regardless of the degree of implant tapering, immediate loading of wide-diameter implants placed in molar extraction sockets generated higher stress/strain levels than implants placed in healed sockets. In all models, the von Mises stresses and strains at the implant surfaces, cortical bone, and cancellous bone increased with the increasing taper angle of the implant body, except for the buccal cancellous bone in the healed models. The maximum von Mises strains were highly concentrated on the buccal cortical struts in the extracted models and around the implant neck in the healed models. The maximum von Mises stresses on the implant threads were more concentrated in the non-tapered coronal part of the 11° and 14° tapered implants, particularly in the healed models, while the stresses were more evenly dissipated along the implant threads in other models. Under immediate loading conditions, the present study indicates that minimally tapered implants generate the most favorable stress and strain distribution patterns in extracted and healed molar sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1563/AAID-JOI-D-11-00104 | DOI Listing |
Clinics (Sao Paulo)
January 2025
Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui Province, China. Electronic address:
Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.
Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.
J Mater Sci Mater Med
January 2025
Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Biomaterials Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius.
Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedics, Isala Hospital, Zwolle, The Netherlands.
Background: Current knowledge on the microvascular anatomy of adult human menisci is based on cadaveric studies. However, considerable interindividual variation in meniscal microvascularization has been reported in recent studies with small sample sizes.
Purpose: To assess the association between patient characteristics and the depth of microvascularization of the meniscus.
J Diabetes Metab Disord
June 2025
Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia.
Objectives: Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!