The biomagnification behavior of perfluorinated carboxylates (PFCAs) and perfluorinated sulfonates (PFSAs) was studied in terrestrial food webs consisting of lichen and plants, caribou, and wolves from two remote northern areas in Canada. Six PFCAs with eight to thirteen carbons and perfluorooctane sulfonate (PFOS) were regularly detected in all species. Lowest concentrations were found for vegetation (0.02-0.26 ng/g wet weight (ww) sum (Σ) PFCAs and 0.002-0.038 ng/g ww PFOS). Wolf liver showed highest concentrations (10-18 ng/g ww ΣPFCAs and 1.4-1.7 ng/g ww PFOS) followed by caribou liver (6-10 ng/g ww ΣPFCAs and 0.7-2.2 ng/g ww PFOS). Biomagnification factors were highly tissue and substance specific. Therefore, individual whole body concentrations were calculated and used for biomagnification and trophic magnification assessment. Trophic magnification factors (TMF) were highest for PFCAs with nine to eleven carbons (TMF = 2.2-2.9) as well as PFOS (TMF = 2.3-2.6) and all but perfluorooctanoate were significantly biomagnified. The relationship of PFCA and PFSA TMFs with the chain length in the terrestrial food chain was similar to previous studies for Arctic marine mammal food web, but the absolute values of TMFs were around two times lower for this study than in the marine environment. This study demonstrates that challenges remain for applying the TMF approach to studies of biomagnification of PFCAs and PFSAs, especially for terrestrial animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es201353v | DOI Listing |
Philos Trans R Soc Lond B Biol Sci
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
Human-driven habitat loss is recognized as the greatest cause of the biodiversity crisis, yet to date we lack robust, spatially explicit metrics quantifying the impacts of anthropogenic changes in habitat extent on species' extinctions. Existing metrics either fail to consider species identity or focus solely on recent habitat losses. The persistence score approach developed by Durán .
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal.
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile).
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia.
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy.
Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.
View Article and Find Full Text PDFToxics
December 2024
Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
The pervasiveness of microplastics (MPs) in terrestrial and aquatic ecosystems has become a significant environmental concern in recent years. Because of their slow rate of disposal, MPs are ubiquitous in the environment. As a consequence of indiscriminate use, landfill deposits, and inadequate recycling methods, MP production and environmental accumulation are expanding at an alarming rate, resulting in a range of economic, social, and environmental repercussions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!