A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pre- and postsynaptic effects of norepinephrine on γ-aminobutyric acid-mediated synaptic transmission in layer 2/3 of the rat auditory cortex. | LitMetric

Noradrenergic terminals from the locus coeruleus release norepinephrine (NE) throughout most brain areas, including the auditory cortex, where they affect neural processing by modulating numerous cellular properties including the inhibitory γ-aminobutyric acid (GABA)ergic transmission. We recently demonstrated that NE affects GABAergic signaling onto cortical pyramidal cells in a complex manner. In this study, we used a combination of patch-clamp recording and immunohistochemical techniques to identify the synaptic site and the location of the adrenergic receptors involved in the modulation of GABAergic signaling in cortical layer 2/3 of the rat. Our results showed that NE increases the frequency of spike-independent miniature inhibitory postsynaptic currents (mIPSCs), as well as the probability of release of unitary inhibitory postsynaptic currents (IPSCs) obtained with patch-clamp pair-recordings. The pharmacology of mIPSCs and the identification of adrenergic receptors in neurons containing the GABAergic marker parvalbumin (PV) suggest that NE increases the presynaptic probability of GABA release by activating α(2) - and β-receptors on PV-positive neurons. On the contrary, bath-applied NE or phenylephrine, decreased the current mediated by pressure application of the GABA(A) -receptor agonist muscimol, as well as the amplitude-but not the frequency-of mIPSCs, indicating that activation of postsynaptic α(1) adrenoceptors reversibly depressed GABAergic currents. We speculate that while a generalized postsynaptic decrease of GABAergic inhibition might decrease the synaptic activation threshold for pyramidal neurons corresponding to an alert state, NE might promote perception and sensory binding by facilitating lateral inhibition as well as the production of γ-oscillations by a selective enhancement of perisomatic inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.20979DOI Listing

Publication Analysis

Top Keywords

layer 2/3
8
2/3 rat
8
auditory cortex
8
gabaergic signaling
8
signaling cortical
8
adrenergic receptors
8
inhibitory postsynaptic
8
postsynaptic currents
8
gabaergic
6
pre- postsynaptic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!