The association of glycolytic enzymes with F-actin is proposed to be one mechanism by which these enzymes are compartmentalized, and, as a result, may possibly play important roles for: regulation of the glycolytic pathway, potential substrate channeling, and increasing glycolytic flux. Historically, in vitro experiments have shown that many enzyme/actin interactions are dependent on ionic strength. Herein, Brownian dynamics (BD) examines how ionic strength impacts the energetics of the association of F-actin with the glycolytic enzymes: lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase (aldolase), and triose phosphate isomerase (TPI). The BD simulations are steered by electrostatics calculated by Poisson-Boltzmann theory. The BD results confirm experimental observations that the degree of association diminishes as ionic strength increases but also suggest that these interactions are significant, at physiological ionic strengths. Furthermore, BD agrees with experiments that muscle LDH, aldolase, and GAPDH interact significantly with F-actin whereas TPI does not. BD indicates similarities in binding regions for aldolase and LDH among the different species investigated. Furthermore, the residues responsible for salt bridge formation in stable complexes persist as ionic strength increases. This suggests the importance of the residues determined for these binary complexes and specificity of the interactions. That these interactions are conserved across species, and there appears to be a general trend among the enzymes, support the importance of these enzyme-F-actin interactions in creating initial complexes critical for compartmentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179185 | PMC |
http://dx.doi.org/10.1002/prot.23107 | DOI Listing |
Environ Monit Assess
January 2025
ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
Phytoplankton are diverse photosynthetic organisms in estuarine ecosystems and sensitive indicators of environmental changes. This study employed Generalized Additive Model (GAM) to explore the impact of environmental variables on the abundance of six dominant phytoplankton species in the tropical Karanja estuary, India. Data were collected from five sampling stations between January 2022 and March 2023.
View Article and Find Full Text PDFNanoscale
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene (EDA@CMPS) millispheres. The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.
View Article and Find Full Text PDFSmall
January 2025
Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany.
Separators are critical components of zinc-metal batteries (ZMBs). Despite their high ionic conductivity and excellent electrolyte retention, the widely used glass fiber (GF) membranes suffer from poor mechanical stability and cannot suppress dendrite growth, leading to rapid battery failure. Contrarily, polymer-based separators offer superior mechanical strength and facilitate more homogeneous zinc (Zn) deposition.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea.
This study proposes fluorenylmethoxycarbonyl (Fmoc)-protected single amino acids (Fmoc-AAs) as a minimalistic model system to investigate liquid-liquid phase separation (LLPS) and the elusive liquid-to-solid transition of condensates. We demonstrated that Fmoc-AAs exhibit LLPS depending on the pH and ionic strength, primarily driven by hydrophobic interactions. Systematic examination of the conditions under which each Fmoc-AA undergoes LLPS revealed distinct residue-dependent trends in the critical concentrations and phase behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!