Pseudomonas syringae pv. tabaci causes wildfire disease in tobacco plants. The hrp pathogenicity island (hrp PAI) of P. syringae pv. tabaci encodes a type III secretion system (TTSS) and its regulatory system, which are required for pathogenesis in plants. Three important regulatory proteins-HrpR, HrpS, and HrpL-have been identified to activate hrp PAI gene expression. The bacterial Lon protease regulates the expression of various genes. To investigate the regulatory mechanism of the Lon protease in P. syringae pv. tabaci 11528, we cloned the lon gene, and then a Δlon mutant was generated by allelic exchange. lon mutants showed increased UV sensitivity, which is a typical feature of such mutants. The Δlon mutant produced higher levels of tabtoxin than the wild-type. The lacZ gene was fused with hrpA promoter and activity of β-galactosidase was measured in hrp-repressing and hrp-inducing media. The Lon protease functioned as a negative regulator of hrp PAI under hrp-repressing conditions. We found that strains with lon disruption elicited the host defense system more rapidly and strongly than the wild-type strain, suggesting that the Lon protease is essential for systemic pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887642PMC
http://dx.doi.org/10.1007/s10059-011-1017-3DOI Listing

Publication Analysis

Top Keywords

lon protease
20
syringae tabaci
16
hrp pai
12
pseudomonas syringae
8
tabaci 11528
8
lon
8
Δlon mutant
8
protease
5
negative regulation
4
regulation pathogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!