The generation of various subtypes of neurons and glial cells at the right time and place is crucial for the proper development of the vertebrate CNS. Although the mechanisms and factors for the regulation of neuronal diversity in the CNS have been well studied, the mechanisms regulating the sequential production of neuronal and glial cells from neural precursors remain poorly understood. This study shows that Tcf3, a member of the Lef/Tcf family of proteins, is required to inhibit the premature oligodendroglial fate specification of spinal cord precursors using the transgenic zebrafish, which expresses a dominant repressor form of Tcf3 under the control of a heat-shock inducible promoter. In addition, the data revealed that Tcf3 function in oligodendroglial fate specification is mediated independently of canonical Wnt signaling. Altogether, these results show a novel function for Tcf3 in regulating the timing of oligodendroglial fate specification in the spinal cord.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887649 | PMC |
http://dx.doi.org/10.1007/s10059-011-0152-1 | DOI Listing |
Nat Commun
November 2024
Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France.
Oligodendrocytes are critical for CNS myelin formation and are involved in preterm-birth brain injury (PBI) and multiple sclerosis (MS), both of which lack effective treatments. We present a pharmacogenomic approach that identifies compounds with potent pro-oligodendrogenic activity, selected through a scoring strategy (OligoScore) based on their modulation of oligodendrogenic and (re)myelination-related transcriptional programs. Through in vitro neural and oligodendrocyte progenitor cell (OPC) cultures, ex vivo cerebellar explants, and in vivo mouse models of PBI and MS, we identify FDA-approved leucovorin and dyclonine as promising candidates.
View Article and Find Full Text PDFCells
June 2024
Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland.
The abnormal growth of oligodendrocyte precursor cells (OPCs) significantly contributes to the progression of glioblastoma tumors. Hence, molecules that block OPC growth may be of therapeutic importance in treating gliomas. 2-Methoxyestradiol (2ME), an endogenous tubulin-interacting metabolite of estradiol, is effective against multiple proliferative disorders.
View Article and Find Full Text PDFbioRxiv
February 2024
Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton, Victoria, Australia.
In multiple sclerosis (MS), chronic demyelination initiated by immune-mediated destruction of myelin, leads to axonal damage and neuronal cell death, resulting in a progressive decline in neurological function. The development of interventions that potentiate remyelination could hold promise as a novel treatment strategy for MS. To this end, our group has demonstrated that neural precursor cells (NPCs) residing in the ventricular-subventricular zone (V-SVZ) of the adult mouse brain contribute significantly to remyelination in response to central nervous system (CNS) demyelination and can regenerate myelin of normal thickness.
View Article and Find Full Text PDFNPJ Regen Med
March 2024
Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA.
Regeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair.
View Article and Find Full Text PDFRes Sq
July 2023
Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA.
Regeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!