Recombinant expression of proteins of interest in Escherichia coli is an important tool in the determination of protein structure. However, lack of expression and insolubility remain significant challenges to the expression and crystallization of these proteins. The SSGCID program uses a wheat germ cell-free expression system as a rescue pathway for proteins that are either not expressed or insoluble when produced in E. coli. Testing indicates that the system is a valuable tool for these protein targets. Further increases in solubility were obtained by the addition of the NVoy polymer reagent to the reaction mixture. These data indicate that this eukaryotic cell-free expression system has a high success rate and that the addition of specific reagents can increase the yield of soluble protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169397PMC
http://dx.doi.org/10.1107/S1744309111032143DOI Listing

Publication Analysis

Top Keywords

cell-free expression
12
expression system
12
wheat germ
8
germ cell-free
8
expression
6
system
4
system pathway
4
pathway improve
4
protein
4
improve protein
4

Similar Publications

Circulating biomarkers associated with pediatric sickle cell disease.

Front Mol Biosci

December 2024

Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.

Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.

View Article and Find Full Text PDF

A cell-free gene expression system for prototyping and gene expression analysis.

Appl Environ Microbiol

December 2024

Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.

is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of .

View Article and Find Full Text PDF

The present work aimed to examine the primary mechanisms of liver damage, namely the impact of gut-derived endotoxins along the gut-liver axis and adipose-derived free fatty acids along the adipose-liver axis. These processes are known to play a significant role in the development of hepatic inflammation and steatosis. Although possible overlapping in the pathogenesis was expected, these processes have unique pathophysiological consequences.

View Article and Find Full Text PDF

Identification of syncytiotrophoblast-derived cf-RNA OPA1 to predict the occurrence of preeclampsia.

Placenta

December 2024

Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address:

Background: Pre-eclampsia (PE) poses a significant threat to mothers and infants worldwide. Studies indicate that taking low-dose aspirin before the 16th week of pregnancy may prevent approximately 70 % of PE cases, highlighting the importance of predicting PE. Cell-free RNA (cf-RNA) exhibits significant changes in the maternal peripheral blood during early pregnancy, making cf-RNA analysis a promising and less invasive method for predicting PE.

View Article and Find Full Text PDF

Small molecules inhibiting EPHEMERAL1 to extend flower longevity by regulating petal senescence.

Plant Cell Rep

December 2024

Floriculture Lab, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, (CSIR-IHBT), Palampur, H.P., 176061, India.

Everlastin1 and Everlastin2, potent inhibitors of EPH1, were identified through a wheat cell-free chemical-screening system. This innovative platform enables the development of small molecules that target 'undruggable' transcription factors. By specifically targeting the EPH1 pathway, these inhibitors delay petal senescence, extending the longevity and quality of ornamental flowers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!