The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169392PMC
http://dx.doi.org/10.1107/S1744309111017374DOI Listing

Publication Analysis

Top Keywords

immobilized metal-affinity
8
metal-affinity chromatography
8
expression solubility
8
structural genomic
8
recovery imac
8
proteins
5
chromatography protein-recovery
4
screening
4
protein-recovery screening
4
screening predictive
4

Similar Publications

Characterization of the E26H Mutant Schistosoma japonicum Glutathione S-Transferase.

Proteins

January 2025

Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

Glutathione-S-transferase, such as that of Schistosoma japonicum (sjGST) belongs to the most widely utilized fusion tags in the recombinant protein technology. The E26H mutation of sjGST has already been found to remarkably improve its ability for binding divalent ions, enabling its purification with immobilized metal affinity chromatography (IMAC). Nevertheless, most characteristics of this mutant remained unexplored to date.

View Article and Find Full Text PDF

Introduction: Laccases are blue-multicopper containing enzymes that are known to play a role in the bioconversion of recalcitrant compounds. Their role in free radical polymerization of aromatic compounds for their valorization remains underexplored. In this study, we used a pBAD plasmid containing a previously characterized CotA laccase gene (abbreviated as -Lacc) from strain ATCC 9945a to express this enzyme and explore its biotransformation/polymerization potential on β-naphthol.

View Article and Find Full Text PDF

The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5.

Neurobiol Dis

December 2024

Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany. Electronic address:

The autosomal recessive disease ataxia-telangiectasia (A-T) presents with cerebellar degeneration, immunodeficiency, radiosensitivity, capillary dilatations, and pulmonary infections. Most symptoms outside the nervous system can be explained by failures of the disease protein ATM as a Ser/Thr-kinase to coordinate DNA damage repair. However, ATM in adult neurons has cytoplasmic localization and vesicle association, where its roles remain unclear.

View Article and Find Full Text PDF

Facile preparation of titanium functionalized cross-linked chitosan polymer for phosphoproteome analysis in serum.

J Chromatogr B Analyt Technol Biomed Life Sci

October 2024

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China. Electronic address:

Efficient phosphopeptide enrichment is extremely important for proteomics research. In this work, chitosan (CTs), 2,3-dihydroxyterephthalaldehyde (2,3-DHA), and carbohydrazide (CHZ) are polymerized to generate the polymer (DHA-CTs-CHZ), and then the polymer (DHA-CTs-CHZ) is coupled with a significant number of titanium ions to enrich phosphopeptides. The material exhibits high selectivity (5000:1 M ratio of BSA to β-casein), sensitivity (0.

View Article and Find Full Text PDF

The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is one of the most important post-translational modifications that regulates many biological processes. There have been relatively few studies on the phosphoproteome of recombinant Chinese hamster ovary (CHO) cells to date despite phosphorylation playing a crucial role in regulating many molecular and cellular processes relevant to bioprocess phenotypes including, for example, transcription, translation, growth, apoptosis, and signal transduction. In this chapter, we provide a protocol for phosphoproteomic analysis of CHO cells using phosphopeptide enrichment with metal oxide affinity chromatography (MOAC) and immobilized metal affinity chromatography (IMAC) techniques, followed by site-specific identification of phosphorylated residues using liquid chromatography mass spectrometry (LC-MS), multistage activation (MSA), and MS3 strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!