Wnt/Ca2+ signaling pathway: a brief overview.

Acta Biochim Biophys Sin (Shanghai)

Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.

Published: October 2011

The non-canonical Wnt/Ca(2+) signaling cascade is less characterized than their canonical counterpart, the Wnt/β-catenin pathway. The non-canonical Wnt signaling pathways are diverse, defined as planer cell polarity pathway, Wnt-RAP1 signaling pathway, Wnt-Ror2 signaling pathway, Wnt-PKA pathway, Wnt-GSK3MT pathway, Wnt-aPKC pathway, Wnt-RYK pathway, Wnt-mTOR pathway, and Wnt/calcium signaling pathway. All these pathways exhibit a considerable degree of overlap between them. The Wnt/Ca(2+) signaling pathway was deciphered as a crucial mediator in development. However, now there is substantial evidence that the signaling cascade is involved in many other molecular phenomena. Many aspects of Wnt/Ca(2+) pathway are yet enigmatic. This review will give a brief overview of the fundamental and evolving concepts of the Wnt/Ca(2+) signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1093/abbs/gmr079DOI Listing

Publication Analysis

Top Keywords

signaling pathway
24
wnt/ca2+ signaling
16
pathway
14
signaling
8
signaling cascade
8
wnt/ca2+
5
pathway overview
4
overview non-canonical
4
non-canonical wnt/ca2+
4
cascade characterized
4

Similar Publications

Plants and microorganisms coexist within complex ecosystems, significantly influencing agricultural productivity. Depending on the interaction between the plant and microbes, this interaction can either help or harm plant health. Microbes interact with plants by secreting proteins that influence plant cells, producing bioactive compounds like antibiotics or toxins, and releasing molecules such as N-acyl homoserine lactones to coordinate their behaviour.

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoprotein C promotes non-small cell lung cancer progression by enhancing XB130 mRNA stability and translation.

Cancer Cell Int

January 2025

Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.

Background: XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood.

View Article and Find Full Text PDF

Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!