The aim of this study was to evaluate the tensile bond strength of self-etching adhesive systems with different dentin conditioning times. Sixty caries-free, extracted third molars were selected, with the occlusal surface removed by a diamond saw disc. The specimens were embedded in epoxy resin and divided randomly into six groups (n = 10), according to the conditioning time and adhesive system used. After restoration, the specimens were stored in distilled water at room temperature for 24 hours; they then were submitted to the tensile bond strength test. The results were measured in MPa, then submitted to ANOVA and Tukey's test (P = 0.05). The adhesive system used and the length of dentin conditioning time were statistically significant (P < 0.05). The application time of the conditioner before photocuring did not have a significant effect on tensile bond strength. These results indicate that the resting time of adhesive above the dentin does not directly affect the bond strength of the adhesive system.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bond strength
20
conditioning time
12
tensile bond
12
adhesive system
12
self-etching adhesive
8
adhesive systems
8
dentin conditioning
8
time adhesive
8
adhesive
6
time
5

Similar Publications

Three new hexagonal perovskites with CsMMRhCl (M = Na, Ag; M = Mn, Fe) stoichiometry have been synthesized from solution precipitation reactions. These air-stable compounds crystallize as triply cation-ordered variants of the 6H perovskite structure. This structure contains octahedra that share a common face to form MRhCl dimers that are arranged on a two-dimensional triangular network.

View Article and Find Full Text PDF

Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.

View Article and Find Full Text PDF

Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing.

Adv Healthc Mater

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion.

View Article and Find Full Text PDF

This study examines the intricate area of refractory-based high entropy alloys (RHEAs), focusing on a series of complex compositions involving nine diverse refractory elements: Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. We investigate the phase stability, bonding interactions, electronic structures, lattice distortions, mechanical, and thermal properties of six RHEAs with varying elemental ratios using VASP and OLCAO DFT calculations. Through comprehensive analysis, we investigate the impact of elemental variations on the electronic structure, interacting bond dynamics, lattice distortion, thermodynamic, mechanical, and thermal properties within these RHEAs, providing an insight into how these specific elemental variations in composition give rise to changes in the calculated properties in ways that would guide future experimental and computational efforts.

View Article and Find Full Text PDF

A Microwave-Strengthened Supramolecular Adhesive: from Flexible Pressure Sensitive Bonding to Strong and Muti-Reusable Hot Melt Bonding.

Small

January 2025

Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

A microwave-strengthened supramolecular adhesive by introducing maleic acid amide bonds into the cross-linked networks of catechol-based monomers and iron oxide nanoparticles is reported. Under microwave irradiation, the supramolecular adhesive can be rapidly heated up, causing the transformation from maleic acid amide bonds to maleimide bonds and thus the increase of its cohesive strength. The supramolecular adhesive can flexibly bond substrates like pressure sensitive adhesives during the bonding procedure and shows an adhesion strength of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!