We propose a mathematical formula that predicts the trajectory of the recovery from lobar gray and white matter volume deficits in individuals with sustained abstinence from alcohol. The formula was validated by using MRI-measured volumetric data from 16 alcohol dependent individuals who had brain scans at three time points during abstinence from alcohol. Using the measured volumetric data of each individual from the first two time points, we estimated the individual's gray and white matter volume of the frontal, parietal and temporal lobes for the third time point using the formula. Similarly, using the measured data for the second and third time points, we estimated the first time point data for each individual. The data predicted from the formula were very similar to the experimentally measured data for all lobes and for both gray and white matter. The intra-class correlation coefficients between the measured data and the data estimated from the formula were >0.95 for almost all the tissues. The formula may also be applicable in other neuroimaging studies of tissue volume changes such as white matter myelination during brain development and white matter demyelination or brain volume loss in neurodegenerative diseases, such as Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196029 | PMC |
http://dx.doi.org/10.1016/j.pscychresns.2011.05.003 | DOI Listing |
Nutrients
December 2024
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Background: Dietary intake of polyunsaturated fatty acids (PUFA) plays a significant role in the onset and progression of neurodegenerative diseases. Since the neuroprotective effects of n-3 PUFA have been widely validated, the role of n-6 PUFA remains debated, with their underlying mechanisms still not fully understood.
Methods: In this study, 169,295 participants from the UK Biobank were included to analyze the associations between dietary n-6 PUFA intake and neurodegenerative diseases using Cox regression models with full adjustments for potential confounders.
J Clin Med
December 2024
Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Radiotherapy (RT) remains crucial in treating both primary and metastatic central nervous system cancer. Despite advancements in modern techniques that mitigate some toxic adverse effects, magnetic resonance imaging (MRI) scans still reveal a wide range of radiation-induced changes. Radiation can adversely affect neuroglial cells and their precursors, potentially triggering a demyelinating pattern similar to multiple sclerosis (MS).
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
Background: The levels of β-amyloid precursor protein (β-APP), tau protein, and phosphorylation of tau (p-tau) protein were examined by quantitative immunohistochemistry in the spinal cord sections of mice suffering from experimental autoimmune encephalomyelitis (EAE) in the successive phases of the disease: onset, peak, and chronic.
Methods: EAE was induced in C57BL/6 mice by immunization with MOG35-55 peptide. The degree of pathological changes was assessed in cross-sections of the entire spinal cord.
Brain Sci
December 2024
Imaging Sciences, Cleveland Clinic, Cleveland, OH 44195, USA.
Background/objectives: Those with the genetic disorder Down syndrome are at high risk of developing Alzheimer's disease. Previous work shows group differences in magnetic resonance spectroscopy metabolite measures in adults with Down syndrome who have Alzheimer's disease-related dementia compared to those who do not. In this pilot study, we assess relationships between metabolites and measures related to dementia status in a sample of adults with Down syndrome.
View Article and Find Full Text PDFBrain Sci
December 2024
Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), 39123 Trento, Italy.
In glioma surgery, maximizing the extent of resection while preserving cognitive functions requires an understanding of the unique architecture of the white matter (WM) pathways of the single patient and of their spatial relationship with the tumor. Tractography enables the reconstruction of WM pathways, and bundle segmentation allows the identification of critical connections for functional preservation. This study evaluates the effectiveness of a streamline-based approach for bundle segmentation on a clinical dataset as compared to the traditional ROI-based approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!