Six acylated delphinidin glycosides (pigments 1-6) and one acylated kaempferol glycoside (pigment 9) were isolated from the blue flowers of cape stock (Heliophila coronopifolia) in Brassicaceae along with two known acylated cyanidin glycosides (pigments 7 and 8). Pigments 1-8, based on 3-sambubioside-5-glucosides of delphinidin and cyanidin, were acylated with hydroxycinnamic acids at 3-glycosyl residues of anthocyanidins. Using spectroscopic and chemical methods, the structures of pigments 1, 2, 5, and 6 were determined to be: delphinidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(acyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were, respectively, cis-p-coumaric acid for pigment 1, trans-caffeic acid for pigment 2, trans-p-coumaric acid for pigment 5 (a main pigment) and trans-ferulic acid for pigment 6, respectively. Moreover, the structure of pigments 3 and 4 were elucidated, respectively, as a demalonyl pigment 5 and a demalonyl pigment 6. Two known anthocyanins (pigments 7 and 8) were identified to be cyanidin 3-(6-p-coumaroyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 7 and cyanidin 3-(6-feruloyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 8 as minor anthocyanin pigments. A flavonol pigment (pigment 9) was isolated from its flowers and determined to be kaempferol 3-O-[6-O-(trans-feruloyl)-β-glucopyranoside]-7-O-cellobioside-4'-O-glucopyranoside as the main flavonol pigment. On the visible absorption spectral curve of the fresh blue petals of this plant and its petal pressed juice in the pH 5.0 buffer solution, three characteristic absorption maxima were observed at 546, 583 and 635 nm. However, the absorption curve of pigment 5 (a main anthocyanin in its flower) exhibited only one maximum at 569 nm in the pH 5.0 buffer solution, and violet color. The color of pigment 5 was observed to be very unstable in the pH 5.0 solution and soon decayed. In the pH 5.0 solution, the violet color of pigment 5 was restored as pure blue color by addition of pigment 9 (a main flavonol in this flower) like its fresh flower, and its blue solution exhibited the same three maxima at 546, 583 and 635 nm. On the other hand, the violet color of pigment 5 in the pH 5.0 buffer solution was not restored as pure blue color by addition of deacyl pigment 9 or rutin (a typical flower copigment). It is particularly interesting that, a blue anthocyanin-flavonol complex was extracted from the blue flowers of this plant with H(2)O or 5% HOAc solution as a dark blue powder. This complex exhibited the same absorption maxima at 546, 583 and 635 nm in the pH 5.0 buffer solution. Analysis of FAB mass measurement established that this blue anthocyanin-flavonol complex was composed of one molecule each of pigment 5 and pigment 9, exhibiting a molecular ion [M+1] (+) at 2102 m/z (C(93)H(105)O(55) calc. 2101.542). However, this blue complex is extremely unstable in acid solution. It really dissociates into pigment 5 and pigment 9.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2011.07.020DOI Listing

Publication Analysis

Top Keywords

pigment
23
acid pigment
16
buffer solution
16
blue
12
blue flowers
12
pigment main
12
pigment pigment
12
546 583
12
583 635
12
violet color
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!