Chronic treatment with the opioid antagonist naltrexone favours the coupling of spinal cord μ-opioid receptors to Gαz protein subunits.

Neuropharmacology

Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Cantabria, Spain.

Published: February 2012

Sustained administration of opioid antagonists to rodents results in an enhanced antinociceptive response to agonists. We investigated the changes in spinal μ-opioid receptor signalling underlying this phenomenon. Rats received naltrexone (120 μg/h; 7 days) via osmotic minipumps. The antinociceptive response to the μ-agonist sufentanil was tested 24 h after naltrexone withdrawal. In spinal cord samples, we determined the interaction of μ-receptors with Gα proteins (agonist-stimulated [(35)S]GTPγS binding and immunoprecipitation of [(35)S]GTPγS-labelled Gα subunits) as well as μ-opioid receptor-dependent inhibition of the adenylyl cyclase (AC) activity. Chronic naltrexone treatment augmented DAMGO-stimulated [(35)S]GTPγS binding, potentiated the inhibitory effect of DAMGO on the AC/cAMP pathway, and increased the inverse agonist effect of naltrexone on cAMP accumulation. In control rats, the inhibitory effect of DAMGO on cAMP production was antagonized by pertussis toxin (PTX) whereas, after chronic naltrexone, the effect became resistant to the toxin, suggesting a coupling of μ-receptors to PTX-insensitive Gα(z) subunits. Immunoprecipitation assays confirmed the transduction switch from Gα(i/o) to Gα(z) proteins. The consequence was an enhancement of the antinociceptive response to sufentanil that, in consonance with the neurochemical data, was prevented by Gα(z)-antisense oligodeoxyribonucleotides but not by PTX. Such changes in opioid receptor signalling can be a double-edged sword. On the one hand, they may have potential applicability to the optimisation of the analgesic effects of opioid drugs for the control of pain. On the other hand, they represent an important homeostatic dysregulation of the endogenous opioid system that might account for undesirable effects in patients chronically treated with opioid antagonists. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2011.08.029DOI Listing

Publication Analysis

Top Keywords

antinociceptive response
12
spinal cord
8
opioid antagonists
8
receptor signalling
8
[35s]gtpγs binding
8
chronic naltrexone
8
inhibitory damgo
8
opioid
6
naltrexone
6
chronic treatment
4

Similar Publications

The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.

View Article and Find Full Text PDF

The mu-opioid receptor (MOR) is a major target for the treatment of pain. However, opioids are prone to side effects which limit their effectiveness as analgesics and can lead to opioid use disorders or, even, lethal overdose. The systemic administration of opioid agonists makes it both very difficult to decipher their underlying circuit mechanisms of action and to limit drug action to specific receptor subpopulations to isolate therapeutic effects from adverse side effects.

View Article and Find Full Text PDF

Antagonizing NK-1R modulates pain perception following corneal injury.

Exp Eye Res

January 2025

Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA. Electronic address:

Substance P (SP) expressed by corneal nerves, is an 11-amino acid long neuropeptide from the tachykinin family, encoded by the Tac1 gene, and binds to neurokinin receptors. SP overexpression is associated with various pathological responses in the cornea including vasodilation, pain, inflammation, and angiogenesis in the normally avascular tissue. This study investigates the role of neurokinin-1 receptor (NK-1R) mediated signaling in nociception, nerve regeneration, and neuronal activation following mechanical corneal injury in mice.

View Article and Find Full Text PDF

Introduction And Objective: The aim of the study was to investigate the effect of bee venom on the activity of two analgesics: ketoprofen (a non-steroidal anti-inflammatory drug) and tramadol (an opioid drug) in the acute thermal pain model (hot-plate test) in mice.

Material And Methods: Linear regression analysis was used to evaluate the dose-response relationship between logarithms of drug doses and their resultant maximum possible anti-nociceptive effects in the mouse hot-plate test. Doses that increased the anti-nociceptive effect by 20% (ED values) for bee venom, ketoprofen and tramadol, and their combination were calculated from linear equations.

View Article and Find Full Text PDF

Antinociceptive and anti-inflammatory activities of the methanol extract of Korovin in a rat model.

Arch Razi Inst

June 2024

Department of Pharmacy Practice, Faculty of Pharmacy, University of Sindh, Jamshoro, Pakistan.

Today, the current chemical agents used for the management of pain cause numerous complications. They are associated with the occurrence of disorders in the digestive system, damage to the kidney, or addiction, which has prompted individuals to seek novel drugs that, apart from removing the side effects, are cost-effective and available. The present survey aimed to assess the antinociceptive and anti-inflammatory activity of Korovin methanolic extract (FEME) in male Swiss mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!