A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nucleic acid-based technologies in therapy of malignant gliomas. | LitMetric

Malignant gliomas are the deadliest brain tumors, which are characterized by highly invasive growth, a rampant genetic instability and intense resistance to apoptosis. Such an aggressive behavior of malignant gliomas is reflected in the resistance to chemo- and radiotherapy and weak prognosis in spite of cytoreduction through surgery. Brain tumors preferentially express a number of specific protein and RNA markers, that may be exploited as potential therapeutic targets in design of the new treatment modalities based on nucleic acids. For almost three decades, a possibility to apply DNA and RNA molecules as anticancer therapeutics have been studied. A variety of antisense oligonucleotides, ribozymes, DNAzymes, and aptamers can be designed to trigger the sequence-specific inhibition of particular mRNA of interest. RNA interference (RNAi) is the latest and the most promising technique in the long line of nucleic acid-based therapeutic technologies. Recently, we designed and implemented the experimental therapy of patients suffering from malignant brain tumors based on application of double-stranded RNA (dsRNA) specific for tenascin-C (TN-C) mRNA. That therapeutic agent, called ATN-RNA, induces RNAi pathway to inhibit the synthesis of TN-C, the extracellular matrix protein which is highly overexpressed in brain tumor tissue. In the chapter specific problems of application of nucleic acid-based technologies in glioma tumors treatment will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138920111798377067DOI Listing

Publication Analysis

Top Keywords

nucleic acid-based
12
malignant gliomas
12
brain tumors
12
acid-based technologies
8
nucleic
4
technologies therapy
4
malignant
4
therapy malignant
4
gliomas malignant
4
gliomas deadliest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!