Measurement of optical Feshbach resonances in an ideal gas.

Phys Rev Lett

JILA and Department of Physics, NIST and University of Colorado, Boulder, 80309-0440, USA.

Published: August 2011

Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.107.073202DOI Listing

Publication Analysis

Top Keywords

optical feshbach
16
feshbach resonance
12
ideal gas
8
measurement optical
4
feshbach
4
feshbach resonances
4
resonances ideal
4
gas narrow
4
narrow intercombination
4
intercombination alkaline
4

Similar Publications

Article Synopsis
  • Many experimental setups in quantum science rely on laser fields for controlling states, but this control can suffer from issues related to optical phase noise.
  • Researchers introduced an optical feedforward technique to minimize laser phase noise during the stimulated Raman adiabatic passage for transferring ultracold RbCs molecules.
  • After conducting over 100 transfers on individual molecules, they achieved a notable transfer efficiency of 98.7(1)%, which is primarily constrained by the intensity of the lasers used.
View Article and Find Full Text PDF

Feshbach hypothesis of high-Tc superconductivity in cuprates.

Nat Commun

January 2025

Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany.

Article Synopsis
  • The study explores strong pairing mechanisms in many-body physics, particularly through a Feshbach perspective, focusing on interactions in Fermi-Hubbard models related to doped Mott insulators.
  • It theorizes the presence of a low-energy excited state of two holes that facilitates near-resonant interactions, which aligns with observed behaviors in cuprate materials.
  • The authors propose experimental methods like cARPES and pair-tunneling measurements to test their theories, suggesting a link between emergent Feshbach resonances and superconductivity in antiferromagnetic Mott insulators.
View Article and Find Full Text PDF

Observation of Photoassociation Resonances in Ultracold Atom-Molecule Collisions.

Phys Rev Lett

March 2024

Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.

We report on the observation of photoassociation resonances in ultracold collisions between ^{23}Na^{40}K molecules and ^{40}K atoms. We perform photoassociation in a long-wavelength optical dipole trap to form deeply bound triatomic molecules in electronically excited states. The atom-molecule Feshbach resonance is used to enhance the free-bound Franck-Condon overlap.

View Article and Find Full Text PDF

Energies and lifetimes of vibrational resonances were computed for O-enriched isotopologue O = {OOO and OOO} of the ozone molecule using hyperspherical coordinates and the method of complex absorbing potential. Various types of scattering resonances were identified, including roaming OO-O rotational states, the series corresponding to continuation of bound vibrational resonances of highly excited bending or symmetric stretching vibrational modes. Such a series become metastable above the dissociation limit.

View Article and Find Full Text PDF

Rotational energy transfer in the collision of N2O with He atom.

J Chem Phys

September 2023

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China.

The quantum state-to-state rotationally inelastic quenching of N2O by colliding with a He atom is studied on an ab initio potential energy surface with N2O lying on its vibrational ground state. The cross sections for collision energies from 10-6-100 cm-1 and rate constants from 10-5-10 K are calculated employing the fully converged quantum close-coupling method for the quenching of the j = 1-6 rotational states of N2O. Numerous van der Waals shapes or Feshbach resonances are observed; the cross sections of different channels are found to follow the Wigner scaling law in the cold threshold regime and may intersect with each other.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!