Synchrotron radiation light is 1 of 4 artificial light sources, the others being electric light, X-ray, and laser. Phase-contrast imaging with hard X-ray has achieved wide application in many scientific fields, such as biomedicine and material science. This article compares the effectiveness of nanohydroxyapatite/collagen (nHAC) and autologous mesenchymal stem cell for the repair of defects in a rabbit model with osteonecrosis of the femoral head under the monitoring of phase-contrast imaging with synchrotron hard X-ray. We established models of bilateral osteonecrosis of the femoral head defect using New Zealand rabbits and divided them into 3 groups. Imaging techniques such as phase-contrast imaging and diffraction enhanced imaging with synchrotron hard X-ray were applied to assess the degradation and repair process of nHAC and mesenchymal stem cell at 4, 8, and 12 weeks postoperatively. We found phase-contrast imaging with synchrotron hard X-ray displayed the reparative process of the bone defect, degradation of nHAC, and osteocyte substitution. There were significant differences in the repair of the bone defect and osteogenesis in groups B and C compared with group A (control). Osteogenesis was more significant in group C. We provided experimental data for the development and application of synchrotron hard X-ray imaging techniques and concluded that phase-contrast microimaging with synchrotron hard X-ray displays the reparative process of bone tissue at a micro-level and plays an important role in the development of tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3928/01477447-20110714-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!