The effective modulation of pore sizes for nanoporous silica nanoparticles still remains a great challenge not satisfactorily solved. In this paper, the pore sizes in the shell of hollow silica nanocapsules are well-tuned by a reversible Si-O bond breakage and reformation process under mildly alkaline conditions (e.g., Na(2) CO(3) solution). The pores in nanosized hollow silica capsules can be modulated from 3.2 nm to larger than 10 nm by a novel, surfactant-directing alkaline-etching (SDAE) strategy. Interestingly, the pores can be fully filled through the regrowth of the dissoluted silicates by bonding to silanols (Si-OH) on the wall surface to generate the nonporous hollow silica nanocapsules. The large-sized pore hollow silica nanocapsules exhibit excellent siRNA-loading capabilities and intracellular transfection efficiencies in vitro. In addition, the large pores in the shell of hollow silica nanocapsules are explored as channels for collecting superparamagnetic, small-sized Fe(3) O(4) nanoparticles as contrast agents for magnetic resonance imaging, initiating a special approach towards pore-size modulation and multifunctionalization of silica-based nanostructural materials for nanobiomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201101055 | DOI Listing |
Carbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFFood Chem
December 2024
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:
Adv Sci (Weinh)
December 2024
Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments.
View Article and Find Full Text PDFJ Vasc Anom (Phila)
December 2024
Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!