Heterotopic ossification (HO), characterized by the formation of mature bone in the soft tissues, is a complication that can accompany musculoskeletal injury, and it is a frequent occurrence within the military population that has experienced orthopaedic combat trauma. The etiology of this disease is largely unknown. Our laboratory has developed strategies to investigate the cellular and molecular events leading to HO using clinical specimens that were obtained during irrigation and debridement of musculoskeletal injuries. Our approach enables to study (1) the cell types that are responsible for pathological transformation and ossification, (2) the cell- and tissue-level signaling that induces the pathologic transformation, and (3) the effect of extracellular matrix topography and force transduction on HO progression. In this review, we will report on our findings in each of these aspects of HO etiology and describe our efforts to recapitulate our findings in an animal model for traumatic HO.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4614-0254-1_4DOI Listing

Publication Analysis

Top Keywords

heterotopic ossification
8
ossification musculoskeletal
4
musculoskeletal trauma
4
trauma modeling
4
modeling stem
4
stem progenitor
4
progenitor cells
4
cells microenvironment
4
microenvironment heterotopic
4
ossification characterized
4

Similar Publications

Introduction: Diffuse pulmonary ossification (DPO) refers to the unusual formation of mature bone tissue within the lung parenchyma. It has been shown to be associated with a number of cardiac and chronic lung diseases. The relation between DPO and idiopathic pulmonary fibrosis (IPF) has been shown in the literature.

View Article and Find Full Text PDF

Integrated transcriptomic analysis reveals evolutionary and developmental characteristics of tendon ossification in teleost.

BMC Biol

December 2024

College of Fisheries, Hubei Hongshan Laboratory/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.

Background: Intermuscular bones (IBs) are segmental intramembranous ossifications located within myosepta. They share similarities with tendon ossification, a form of heterotopic ossification (HO). The mechanisms underlying IB formation remain incompletely understood.

View Article and Find Full Text PDF

PTX3-assembled pericellular hyaluronan matrix enhances endochondral ossification during fracture healing and heterotopic ossification.

Bone

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:

Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling.

View Article and Find Full Text PDF

Ossification of the ligamentum flavum (OLF) is the main causative factor of spinal stenosis, but how to accurately and efficiently identify the ossification region is a clinical pain point and an urgent problem to be solved. Currently, we can only rely on the doctor's subjective experience for identification, with low efficiency and large error. In this study, a deep learning method is introduced for the first time into the diagnosis of ligamentum flavum ossificans, we proposed a lightweight, automatic and efficient method for identifying ossified regions, called CDUNeXt.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic illness marked by progressive heterotopic ossification of tendons, ligaments, fascia, and skeletal muscle, leading to immobility and reduced quality of life. Early recognition is critical to avoiding flare-ups often triggered by trivial trauma or medical interventions. This report presents two early-diagnosed FOP cases-one at 6 months, the other at 18 months-both with typical features and congenital great toe abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!