Background: Protein C (PC) deficiency is associated with a high risk of venous thrombosis. Recently, we identified the PC-A267T mutation in a patient with PC deficiency and revealed by in vitro studies decreased intracellular and secreted levels of the mutant. The aim of the present study was to characterize the underlying mechanism(s).

Methodology/principal Findings: CHO-K1 cells stably expressing the wild-type (PC-wt) or the PC mutant were generated. In order to examine whether the PC mutant was subjected to increased intracellular degradation, the cells were treated with several inhibitors of various degradation pathways and pulse-chase experiments were performed. Protein-chaperone complexes were analyzed by treating the cells with a cross-linker followed by Western blotting (WB). Expression levels of the immunoglobulin-binding protein (BiP) and the phosphorylated eukaryotic initiation factor 2α (P-eIF2α), both common ER stress markers, were determined by WB to examine if the mutation induced ER stress and unfolded protein response (UPR) activation. We found no major differences in the intracellular degradation between the PC variants. The PC mutant was retained in the endoplasmic reticulum (ER) and had increased association with the Grp-94 and calreticulin chaperones. Retention of the PC-A267T in ER resulted in UPR activation demonstrated by increased expression levels of the ER stress markers BiP and P-eIF2α and caused also increased apoptotic activity in CHO-K1 cells as evidenced by elevated levels of DNA fragmentation.

Conclusions/significance: The reduced intracellular level and impaired secretion of the PC mutant were due to retention in ER. In contrast to other PC mutations, retention of the PC-A267T in ER resulted in minor increased proteasomal degradation, rather it induced ER stress, UPR activation and apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162024PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024009PLOS

Publication Analysis

Top Keywords

upr activation
12
unfolded protein
8
protein response
8
cho-k1 cells
8
intracellular degradation
8
expression levels
8
stress markers
8
induced stress
8
retention pc-a267t
8
protein
5

Similar Publications

Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.

View Article and Find Full Text PDF

Appetite-Control and Eating-Behavior Traits Might Not Be Impacted by a Single Weight-Cycling Episode in Weight-Cycling Athletes: Results of the Wave Study.

Int J Sports Physiol Perform

January 2025

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P) UPR 3533, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France.

Purpose: The impact of weight cycling (WC)-successive weight loss (WL) and weight regain (WG)-on athlete performance is well documented, but effects on appetite are not. This study assessed the impact of a WC episode on dietary and appetitive profiles in athletes, considering sex and sport type.

Methods: Athletes (28 male, 20 female) from combat (n = 23), strength (n = 12), and endurance (n = 13) sports participated in 3 conditions during a WC episode (baseline, WL, WG).

View Article and Find Full Text PDF

Governed by the unfolded protein response (UPR), the ability to counteract endoplasmic reticulum (ER) stress is critical for maintaining cellular homeostasis under adverse conditions. Unresolved ER stress leads to cell death through mechanisms that are yet not completely known. To identify key UPR effectors involved in unresolved ER stress, we performed an ethyl methanesulfonate (EMS) suppressor screen on the Arabidopsis mutant, which is impaired in activating cytoprotective UPR pathways.

View Article and Find Full Text PDF

Protein N-glycosylation is a cotranslational modification that takes place in the endoplasmic reticulum (ER). Disruption of this process can result in accumulation of misfolded proteins, known as ER stress. In response, the unfolded protein response (UPR) restores proteostasis or responds by controlling cellular fate, including increased expression of activating transcription factor 4 (ATF4) that can lead to apoptosis.

View Article and Find Full Text PDF

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!