Biomedical cloud computing with Amazon Web Services.

PLoS Comput Biol

Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America.

Published: August 2011

In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161908PMC
http://dx.doi.org/10.1371/journal.pcbi.1002147DOI Listing

Publication Analysis

Top Keywords

cloud computing
8
cloud
5
biomedical cloud
4
computing amazon
4
amazon web
4
web services
4
services overview
4
overview biomedical
4
biomedical computing
4
computing cloud
4

Similar Publications

Crayfish optimization based pixel selection using block scrambling based encryption for secure cloud computing environment.

Sci Rep

January 2025

Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 44, India.

Cloud Computing (CC) is a fast emerging field that enables consumers to access network resources on-demand. However, ensuring a high level of security in CC environments remains a significant challenge. Traditional encryption algorithms are often inadequate in protecting confidential data, especially digital images, from complex cyberattacks.

View Article and Find Full Text PDF

The optimization on the cloud-based data structures is carried out using Adaptive Level and Skill Rate-based Child Drawing Development Optimization algorithm (ALSR-CDDO). Also, the overall cost required in computing and communicating is reduced by optimally selecting these data structures by the ALSR-CDDO algorithm. The storage of the data in the cloud platform is performed using the Divide and Conquer Table (D&CT).

View Article and Find Full Text PDF

Solu: a cloud platform for real-time genomic pathogen surveillance.

BMC Bioinformatics

January 2025

Solu Healthcare Oy, Kalevankatu 31 A 13, 00100, Helsinki, Finland.

Background: Genomic surveillance is extensively used for tracking public health outbreaks and healthcare-associated pathogens. Despite advancements in bioinformatics pipelines, there are still significant challenges in terms of infrastructure, expertise, and security when it comes to continuous surveillance. The existing pipelines often require the user to set up and manage their own infrastructure and are not designed for continuous surveillance that demands integration of new and regularly generated sequencing data with previous analyses.

View Article and Find Full Text PDF

In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.

View Article and Find Full Text PDF

Most current research in cloud forensics is focused on tackling the challenges encountered by forensic investigators in identifying and recovering artifacts from cloud devices. These challenges arise from the diverse array of cloud service providers as each has its distinct rules, guidelines, and requirements. This research proposes an investigation technique for identifying and locating data remnants in two main stages: artefact collection and evidence identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!