Cellular responses to Al-stress in Hordeum vulgare seedling bioassay were evaluated with an objective to identify the possible biomarkers in leaf tissue that would be best suited to biomonitor aluminum (Al) in the environment. Germinating seeds were treated with different concentrations of AlCl(3) at pH 4.5 for 12h. Al-uptake and accumulation in root and leaf, generation of reactive oxygen species (ROS: O(2)(-), H(2)O(2) and ()OH), cell death, activity of antioxidant enzymes: catalase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, lipid peroxidation, protein oxidation, DNase activity and DNA damage were measured in leaf tissue of the seedlings on day 6 after treatment. The above parameters assessed in leaf tissue that followed a dose-response exhibited significant correlation with concentration of Al(3+) in experimental solution as well as in root tissue. The findings underscored the sensitivity as well as potential of Hordeum vulgare seedling bioassay for biomonitoring of Al in the ambient environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2011.08.015DOI Listing

Publication Analysis

Top Keywords

leaf tissue
16
biomarkers leaf
8
hordeum vulgare
8
vulgare seedling
8
seedling bioassay
8
leaf
5
tissue
5
oxidative biomarkers
4
tissue barley
4
barley seedlings
4

Similar Publications

Mitochondrial genome of : features, RNA editing, and insights into male sterility.

Front Plant Sci

January 2025

Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.

Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.

View Article and Find Full Text PDF

Introduction: Fungal endophytes have mutualistic associations with the plant's host, communicating through genetic and metabolic processes. As a result, they gain the ability to generate therapeutically effective metabolites and their derivatives.

Methods: The current study aims to assess antioxidant potential along with the identification of robust metabolites within the crude extract of a potent endophytic fungus Xylaria ellisii isolated from leaf tissues of the Acorus calamus Linn plant.

View Article and Find Full Text PDF

Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.

View Article and Find Full Text PDF

Background: In the burn affected area of the skin, the progression or deepening of wounds is related to oxidative stress. Especially in the highly susceptible stasis zone, tissues survive to the extent that they can cope with oxidative stress.

Objective: This study investigated the potential of extracts (E) derived from the fruits (F) and leaves (L) of elderberry (E), chokeberry (C), and black mulberry (M), which are rich in antioxidant properties, to enhance the recovery of the stasis zone in burn wounds.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!