Wear particles at the host bone-implant interface are a major challenge for successful bone implant arthoplasties. Current understanding of aseptic loosening consists of macrophage-mediated inflammatory responses and increasing osteoclastogenesis, which lead to an imbalance between bone formation and resorption. Despite its significant role in bone regeneration and implant osteointegration, the osteoprogenitor response to wear particles has been examined recent years. More specifically, the intracellular mechanism of osteoprogenitor mediated inflammation has not been fully elucidated. In this study, we examined the role of osteoprogenitors and the cellular mechanism by which metal wear particles elicit an inflammatory cascade. Through both in vivo and in vitro experiments, we have demonstrated that osteoprogenitor cells are capable of initiating inflammatory responses by phagocytosing wear particles, which lead to subsequent accumulation of macrophages and osteoclastogenesis, and the ERK_CEBP/β intracellular signaling is a key inflammatory pathway that links phagocytosis of wear particles to inflammatory gene expression in osteoprogenitors. AZD6244 treatment, a potent inhibitor of the ERK pathway, attenuated particle mediated inflammatory osteolysis both in vivo and in vitro. This study advances our understanding of the mechanisms of osteoprogenitor-mediated inflammation, and provides further evidence that the ERK_CEBP/β pathway may be a suitable therapeutic target in the treatment of inflammatory osteolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193180PMC
http://dx.doi.org/10.1016/j.biomaterials.2011.08.059DOI Listing

Publication Analysis

Top Keywords

wear particles
20
osteoprogenitor cells
8
inflammatory responses
8
in vivo in vitro
8
inflammatory osteolysis
8
inflammatory
7
wear
5
particles
5
actin erk1/2-cebpβ
4
erk1/2-cebpβ signaling
4

Similar Publications

Purpose: To investigate changes in fluid reservoir turbidity parameters over time and its influence on visual performance in eyes with ocular surface disorders (OSD) wearing scleral contact lenses (SL).

Methods: Thirteen eyes with OSD were assessed for corrected distance visual acuity, contrast sensitivity (CS) and fluid reservoir turbidity using anterior segment optical coherence tomography at baseline, after 5 min and 0.5, 1, 2, 3 and 4 h of SL wear on day 1 and after 1 month.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

The wind turbine blades are exposed, during functioning, to the abrasive wear generated by the impact with air-borne sand particles. In this work, samples of a commercial wind turbine blade, made of a multi-layered composite material, are subjected to abrasive wear tests, using an air streamed wearing particles test rig. Following the analysis of the tests' results was found that the only protection against failure of the blade by abrasive damage is the surface layer.

View Article and Find Full Text PDF
Article Synopsis
  • The cleanliness of lubricating oil is crucial for the health of mechanical systems and indicates equipment wear.
  • This study introduces a magnetic-core planar coil sensor to improve the detection accuracy of oil particle contamination through optimized magnetic field configurations.
  • Using COMSOL 6.0 for 3D simulation, the research determines optimal sensor parameters, successfully detecting iron and copper particles with lower detection limits of 46 μm and 110 μm, respectively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!