Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: This study describes the in-situ gelling of econazole nitrate containing thermosensitive polymers composed of poloxamer 407 and 188 as a novel treatment platform for vaginal candidiasis.
Methods: Aqueous thermosensitive formulations containing 1% of econazole nitrate and poloxamer 407 and/or 188 were prepared and their rheological, mechanical and drug-release properties determined at 20 ± 0.1°C and/or 37 ± 0.1°C. Based on their biologically suitable thermorheological properties, formulations containing the mixtures of poloxamer 407 and 188 in ratios of 15:15 (F1), 15:20 (F2) and 20:10 (F3) were chosen for comprehensive analysis.
Key Findings: Formulations based on F3 exhibited typical gel-type mechanical spectra (G' > G″) at 37°C whereas formulations based on F1 and F2 exhibited properties akin to weakly cross-linked gels. Texture profile analysis demonstrated that F3 showed the highest cohesiveness, adhesiveness, hardness and compressibility. No statistically significant differences (P > 0.5) were observed in the release of econazole nitrate from the formulations at pH 4.5, which in all cases followed anomalous diffusion kinetics. Formulations based on 20% poloxamer 407:10% poloxamer 188 were chosen for in-vivo studies and were shown to be effective for the treatment of the vaginal candidiasis. Histopathologic evaluation also supported the effectiveness of the thermosensitive formulation administered intravaginally.
Conclusion: By careful engineering of the rheological properties, in-situ thermosensitive gel formulations of econazole nitrate were prepared and were shown to be efficacious in the treatment of vaginal candidiasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.2042-7158.2011.01315.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!