The Ne + H(2)(+)(v(0) = 0-4, j(0) = 1) proton transfer reaction has been studied in a wide collision energy (E(col)) interval, using the time dependent real wave packet method and taking into account the Coriolis coupling (CC-RWP method) and employing a recent ab initio potential energy surface, widely extending the reaction conditions previously explored at the CC level. The reaction probability shows a strong oscillatory behavior vs E(col) and the presence of sharp resonances, arising from metastable NeH(2)(+) states. The behavior of the reaction cross section σ vs E(col) depends on the vibrational level and can in general be interpreted in terms of the late barrier character of the potential energy surface and the existence (or not) of threshold energy. The situation is particularly complex for v(0) = 2, as σ(v0=2, j0=1) presents significant oscillations with E(col) up to ≈0.33 eV, which probably reflect the resonances found in the reaction probability. Hence, it would be particularly interesting to investigate the Ne + H(2)(+)(v(0) = 2, j(0) = 1) reaction experimentally, as some resonances survive the partial wave summation. The state selected cross sections compare well with previous CC quantum and experimental results, and although the previous centrifugal sudden RWP cross sections are reasonable, the inclusion of the Coriolis coupling is important to achieve a quantitative description of this and similar systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp206565n | DOI Listing |
Phys Chem Chem Phys
November 2024
Science Faculty, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
Methyl radicals in their ground state (CH(X)) were created and excited by two- and one- color excitation schemes for CHBr and CHI, respectively, to record (2+1) REMPI spectra of CH for resonant transitions to the Rydberg states CH**(pA); = 3, 4. Various new and previously observed vibrational bands were identified and analyzed to gain energetic information for the Rydberg states. Particular emphasis was placed on analysis of the rotational structured spectra centered at 70 648 and 60 700 cm, due to transitions from to and for both Rydberg states, respectively.
View Article and Find Full Text PDFAerosp Med Hum Perform
October 2024
Introduction: Habituation to motion has therapeutic applications for motion sickness desensitization and rehabilitation of patients with vestibular disease. Less attention has been devoted to the opposite process: sensitization.
Methods: Subjects (N = 50) were randomly allocated to four sequences: Baseline visual stimulus; then 15 min of time gap; cross-coupled motion (C-C) or a Control condition; then a time gap of 15 min or 2 h; then a retest visual stimulus.
J Chem Phys
September 2024
School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
An improved global potential energy surface (PES) for the electronic ground state of the HeLiH+ system is reported. The data points are calculated at the full configuration-interaction level of theory and extrapolated to the complete basis set limit. The fitting procedure implements a combination of neural network and Aguado-Paniagua functional forms to fit the ab initio data points.
View Article and Find Full Text PDFJ Phys Chem A
September 2024
State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
The first high-resolution translational spectroscopy studies of D atom photoproducts following excitation to the Rydberg states of DS are reported. Excitation at wavelengths λ ∼ 139.1 nm reveals an unusual 'inverse' isotope effect; the B(3←2) Rydberg state of DS predissociates much faster than its counterpart in HS.
View Article and Find Full Text PDFJ Phys Chem A
August 2024
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
A combined analysis of millimeter-wave (70-700 GHz) and rotationally resolved infrared (400-1200 cm) spectra of the ground state and seven fundamental vibrational modes of 1-1,2,4-triazole is reported. While the lowest-energy vibrationally excited state (ν) is well-treated using a single-state distorted-rotor Hamiltonian, the second (ν) and third (ν) vibrationally excited states are involved in strong -type Coriolis coupling and require an appropriate two-state Hamiltonian. The oblate nature of 1-1,2,4-triazole is sufficiently close to the oblate symmetric-top limit that the analysis requires the use of A-reduced, sextic centrifugally distorted-rotor Hamiltonian models in the I representation in order to achieve low σ values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!