Unlabelled: The high rate of mortality and frequent incidence of recurrence associated with hepatocellular carcinoma (HCC) reveal the need for new therapeutic approaches. In this study we evaluated the efficacy of a novel chemoimmunotherapeutic strategy to control HCC and investigated the underlying mechanism that increased the antitumor immune response. We developed a novel orthotopic mouse model of HCC through seeding of tumorigenic hepatocytes from SV40 T antigen (Tag) transgenic MTD2 mice into the livers of syngeneic C57BL/6 mice. These MTD2-derived hepatocytes form Tag-expressing HCC tumors specifically within the liver. This approach provides a platform to test therapeutic strategies and antigen-specific immune-directed therapy in an immunocompetent murine model. Using this model we tested the efficacy of a combination of oral sunitinib, a small molecule multitargeted receptor tyrosine kinase (RTK) inhibitor, and adoptive transfer of tumor antigen-specific CD8(+) T cells to eliminate HCC. Sunitinib treatment alone promoted a transient reduction in tumor size. Sunitinib treatment combined with adoptive transfer of tumor antigen-specific CD8(+) T cells led to elimination of established tumors without recurrence. In vitro studies revealed that HCC growth was inhibited through suppression of STAT3 signaling. In addition, sunitinib treatment of tumor-bearing mice was associated with suppression of STAT3 and a block in T-cell tolerance.

Conclusion: These findings indicate that sunitinib inhibits HCC tumor growth directly through the STAT3 pathway and prevents tumor antigen-specific CD8(+) T-cell tolerance, thus defining a synergistic chemoimmunotherapeutic approach for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243781PMC
http://dx.doi.org/10.1002/hep.24652DOI Listing

Publication Analysis

Top Keywords

tumor antigen-specific
12
antigen-specific cd8+
12
sunitinib treatment
12
hepatocellular carcinoma
8
murine model
8
hcc
8
adoptive transfer
8
transfer tumor
8
cd8+ cells
8
suppression stat3
8

Similar Publications

Development of Peptide Mimics of the Human Acetylcholine Receptor Main Immunogenic Region for Treating Myasthenia Gravis.

Int J Mol Sci

December 2024

Department of Neurology, Davis School of Medicine, University of California, 1515 Newton Court, Davis, CA 95618, USA.

We have designed and produced 39 amino acid peptide mimics of the and human acetylcholine receptors' (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50-70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR.

View Article and Find Full Text PDF

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

In Silico-Guided Discovery of Polysaccharide Derivatives as Adjuvants in Nanoparticle Vaccines for Cancer Immunotherapy.

ACS Nano

January 2025

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China.

Cancer vaccines utilizing nanoparticle (NP) structures that integrate antigens and adjuvants to enhance delivery and stimulate immune responses are emerging as a promising avenue in cancer immunotherapy. However, the development of cancer vaccines has been significantly hindered by the low immunogenicity of tumor antigens. To address this challenge, substantial efforts have been made in developing innovative adjuvants to elicit effective immune responses.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity.

View Article and Find Full Text PDF

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!