Objective: To assess the prevalence of diabetic cardiomyopathy in patients with diabetes mellitus in Manipur and its correlation with different parameters like obesity, blood pressure, lipids, duration of diabetes, and glycemic control.
Materials And Methods: A total of 100 type 2 diabetic patients were selected randomly. Anthropometric parameters were recorded, blood glucose levels and lipid profiles were determined, and the echocardiographic examinations were performed in all patients according to standard techniques. Ejection fraction (EF) was calculated by the formula LVEF% = (LVID)2 - (LVIDS)2. Left ventricular EF was considered normal when EF was 55 to 75%. Diastolic dysfunction was calculated by measuring E and A transmitral inflow velocity. Left ventricular mass in grams is calculated by the formula LVM (gm) = 1.04 × 0.8 [(LVID + PWT + IVST)3 - LVID3] + 0.6.
Results And Conclusions: Diabetic cardiomyopathy was found in 40 patients (40%) of the total study, 29 males (44.6%) and 11 females (31.4%).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156542 | PMC |
http://dx.doi.org/10.4103/2230-8210.83407 | DOI Listing |
Front Cardiovasc Med
January 2025
Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Diabetic cardiomyopathy (DCM) is one of the most prevalent and severe complications associated with diabetes mellitus (DM). The onset of DCM is insidious, with the symptoms being obvious only in the late stage. Consequently, the early diagnosis of DCM is a formidable challenge which significantly influences the treatment and prognosis of DCM.
View Article and Find Full Text PDFInt J Cardiol Cardiovasc Risk Prev
March 2025
Beijing Chaoyang Hospital, Capital Medical University, Department of Endocrinology, Beijing, China.
Object: To explore the mechanism of diabetic cardiomyopathy that hyperglycemia may affect the cardiac function by inhibiting the expression of ATPase β subunit.
Method: Cardiac function, fibrosis levels, and the expression of the ATPase β subunit were observed in Akita mice-a diabetes mice model without lipid metabolism disorders--using morphological, molecular biology, and echocardiographic analyses compared to wild-type mice. The study revealed a connection between the decreased ATPase β subunit and the development of diabetic myocardial injury.
J Res Med Sci
December 2024
Department of Endocrinology, Bin Hai Wan Central Hospital of Dongguan, Dongguan, China.
Background: Diabetic cardiomyopathy (DCM) is a severe complication among patients with Type 2 diabetes, significantly increasing heart failure risk and mortality. Despite various implicated mechanisms, effective DCM treatments remain elusive. This study aimed to construct a comprehensive competing endogenous RNA (ceRNA) network in DCM using bioinformatics analysis.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China.
This article discusses the study by Grubić Rotkvić on the mechanisms of action of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF). T2DM and HF are highly comorbid, with a significantly increased prevalence of HF in patients with T2DM. SGLT2i exhibit potential in reducing hospitalization rates for HF and cardiovascular mortality through multiple mechanisms, including improving blood glucose control, promoting urinary sodium excretion, reducing sympathetic nervous system activity, lowering both preload and afterload on the heart, alleviating inflammation and oxidative stress, enhancing endothelial function, improving myocardial energy metabolism, and stabilizing cardiac ion homeostasis.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!