Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3125
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: This study was designed to analyze the incidence and spectrum of adverse effects of blood transfusion so as to initiate measures to minimize risks and improve overall transfusion safety in the institute.
Materials And Methods: During the period from July 2002 to July 2003 all the adverse events related to transfusion of blood and blood components in various clinical specialties were recorded. They were analyzed and classified on the basis of their clinical features and laboratory tests. Attempt was also made to study the predisposing risk factors.
Results: During the study period 56,503 blood and blood components were issued to 29,720 patients. A total of 105 adverse reactions due to transfusion were observed during the study period. A majority of the adverse reactions was observed in hemato-oncology patients 43% (n = 45) and in presensitized patient groups 63% (n = 66). FNHTR 41% (n = 43) and allergic reactions 34% (n = 36) were the most common of all types of adverse transfusion reactions, followed by AcHTR 8.56% (n = 9). Majority of these AcHTR were due to unmonitored storage of blood in the refrigerator of wards resulting in hemolysis due to thermal injury. Less frequently observed reactions were anaphylactoid reactions (n = 4), bacterial sepsis (n = 4), hypervolemia (n = 2), hypocalcemia (n = 2), TRALI (n = 1), DHTR (n = 1), and TAGvHD (n = 1).
Conclusion: Analysis of transfusion-related adverse outcomes is essential for improving safety. Factors such as improvement of blood storage conditions outside the blood bank, improvement in cross-matching techniques, careful donor screening, adherence to good manufacturing practices while component preparation, bedside monitoring of transfusion, and documentation of adverse events will help in reducing transfusion-related morbidity and mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159249 | PMC |
http://dx.doi.org/10.4103/0973-6247.83245 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!