Transforming growth factor beta-1 (TGF-β1) plays a critical role in progression of cardiac fibrosis, which may involve intracellular calcium change. We examined effects of efonidipine, a dual T-type and L-type calcium channel blocker (CCB), on TGF-β1-induced fibrotic changes in neonatal rat cardiac fibroblast. T-type and L-type calcium channel mRNAs were highly expressed in cultured cardiac fibroblasts. TGF-β1 (5 ng/mL) significantly increased Smad2 phosphorylation and [(3)H]-leucine incorporation, which were attenuated by pretreatment with efonidipine (10 µM). Neither R(-)efonidipine (10 µM), selective T-type CCB, nor nifedipine (10 µM), selective L-type CCB, efficaciously inhibited both TGF-β1-induced Smad2 phosphorylation and [(3)H]-leucine incorporation. However, both were markedly attenuated by combination of R(-)efonidipine and nifedipine, EDTA, or calcium-free medium. Pretreatment with Smad2 siRNA significantly attenuated [(3)H]-leucine incorporation induced by TGF-β1. These data suggest that efonidipine elicits inhibitory effects on TGF-β1- and Smad2-dependent protein synthesis through both T-type and L-type calcium channel-blocking actions in cardiac fibroblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230079PMC
http://dx.doi.org/10.1254/jphs.11065fpDOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
12
t-type l-type
12
l-type calcium
12
[3h]-leucine incorporation
12
cardiac fibrosis
8
rat cardiac
8
calcium channel
8
smad2 phosphorylation
8
phosphorylation [3h]-leucine
8
µm selective
8

Similar Publications

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a heterogeneous cardiac disease and one of its major challenges is the limited accuracy in stratifying the risk of sudden cardiac death (SCD). Positron emission tomography (PET), through the evaluation of myocardial blood flow (MBF) and metabolism using fluorodeoxyglucose (FDG) uptake, can reveal microvascular dysfunction, ischemia, and increased metabolic demands in the hypertrophied myocardium. These abnormalities are linked to several factors influencing disease progression, including arrhythmia development, ventricular dilation, and myocardial fibrosis.

View Article and Find Full Text PDF

Serpina3k lactylation protects from cardiac ischemia reperfusion injury.

Nat Commun

January 2025

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Lactate produced during ischemia-reperfusion injury is known to promote lactylation of proteins, which play controversial roles. By analyzing the lactylomes and proteomes of mouse myocardium during ischemia-reperfusion injury using mass spectrometry, we show that both Serpina3k protein expression and its lactylation at lysine 351 are increased upon reperfusion. Both Serpina3k and its human homolog, SERPINA3, are abundantly expressed in cardiac fibroblasts, but not  in cardiomyocytes.

View Article and Find Full Text PDF

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!