The epicardial potential (EP)-targeted inverse problem of electrocardiography (ECG) has been widely investigated as it is demonstrated that EPs reflect underlying myocardial activity. It is a well-known ill-posed problem as small noises in input data may yield a highly unstable solution. Traditionally, L2-norm regularization methods have been proposed to solve this ill-posed problem. But the L2-norm penalty function inherently leads to considerable smoothing of the solution, which reduces the accuracy of distinguishing abnormalities and locating diseased regions. Directly using the L1-norm penalty function, however, may greatly increase computational complexity due to its non-differentiability. We propose an L1-norm regularization method in order to reduce the computational complexity and make rapid convergence possible. Variable splitting is employed to make the L1-norm penalty function differentiable based on the observation that both positive and negative potentials exist on the epicardial surface. Then, the inverse problem of ECG is further formulated as a bound-constrained quadratic problem, which can be efficiently solved by gradient projection in an iterative manner. Extensive experiments conducted on both synthetic data and real data demonstrate that the proposed method can handle both measurement noise and geometry noise and obtain more accurate results than previous L2- and L1-norm regularization methods, especially when the noises are large.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/56/19/009DOI Listing

Publication Analysis

Top Keywords

l1-norm regularization
12
penalty function
12
epicardial potential
8
gradient projection
8
inverse problem
8
ill-posed problem
8
regularization methods
8
l1-norm penalty
8
computational complexity
8
problem
5

Similar Publications

Using dense genomic markers opens up new opportunities and challenges for breeding programs. The need to penalize marker-specific regression coefficients becomes particularly important when dense markers are available. Therefore, fitting the marker effects to observations using a regularization technique, such as Bayesian LASSO (BL) regression, is of great interesting.

View Article and Find Full Text PDF

Electromagnetic tomography (EMT), with the advantages of being non-contact, non-invasiveness, low cost, simple structure, and fast imaging speed, is a multi-functional tomography technique based on boundary measurement voltages to image the conductivity distribution within the sensing field. EMT is widely used in industrial and biomedical fields. Currently, there are few studies on the application of EMT in magnetic permeability materials, which makes it difficult to obtain high-quality reconstructed images due to its own properties that lead to obvious attenuation of electromagnetic waves during propagation, as well as the ill-posed and ill-conditioned characteristics of EMT.

View Article and Find Full Text PDF

Energy-based displacement tracking of ultrasound images can be implemented by optimizing a cost function consisting of a data term, a mechanical congruency term, and first- and second-order continuity terms. This approach recently provided a promising solution to two-dimensional axial and lateral displacement tracking in ultrasound strain elastography. However, the associated second-order regularizer only considers the unmixed second derivatives and disregards the mixed derivatives, thereby providing suboptimal noise suppression and limiting possibilities for total strain tensor imaging.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the use of variable fractional delay (VFD) FIR filters to address the issue of aperture fill time (AFT) in wideband sparse arrays, aiming to separate spatial and time domain interactions.
  • To reduce the complexity and computational load associated with VFD filter coefficients, a new minimax model that incorporates L2-norm and L1-norm regularizations is introduced, enhancing sparse optimization and avoiding overfitting.
  • An improved S-ADMM algorithm is proposed to solve the nonconvex model for the filter coefficients, leading to significant reductions in system complexity and effectiveness in correcting AFT issues.
View Article and Find Full Text PDF

The function and structure of brain networks (BN) may undergo changes in patients with end-stage renal disease (ESRD), particularly in those accompanied by mild cognitive impairment (ESRDaMCI). Many existing methods for fusing BN focus on extracting interaction features between pairs of network nodes from each mode and combining them. This approach overlooks the correlation between different modal features during feature extraction and the potentially valuable information that may exist between more than two brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!