Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand groundstrokes.

J Appl Biomech

Wolfson School of Mechanical and Manufacturing Engineering, and the School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK.

Published: November 2011

A torque-driven, subject-specific 3-D computer simulation model of the impact phase of one-handed tennis backhand strokes was evaluated by comparing performance and simulation results. Backhand strokes of an elite subject were recorded on an artificial tennis court. Over the 50-ms period after impact, good agreement was found with an overall RMS difference of 3.3° between matching simulation and performance in terms of joint and racket angles. Consistent with previous experimental research, the evaluation process showed that grip tightness and ball impact location are important factors that affect postimpact racket and arm kinematics. Associated with these factors, the model can be used for a better understanding of the eccentric contraction of the wrist extensors during one-handed backhand ground strokes, a hypothesized mechanism of tennis elbow.

Download full-text PDF

Source
http://dx.doi.org/10.1123/jab.27.4.345DOI Listing

Publication Analysis

Top Keywords

computer simulation
8
simulation model
8
one-handed tennis
8
tennis backhand
8
backhand strokes
8
evaluation subject-specific
4
subject-specific torque-driven
4
torque-driven computer
4
simulation
4
model one-handed
4

Similar Publications

Atomic-level simulations are widely used to study biomolecules and their dynamics. A common goal in such studies is to compare simulations of a molecular system under several conditions-for example, with various mutations or bound ligands-in order to identify differences between the molecular conformations adopted under these conditions. However, the large amount of data produced by simulations of ever larger and more complex systems often renders it difficult to identify the structural features that are relevant to a particular biochemical phenomenon.

View Article and Find Full Text PDF

In the last years, it has been proved that some viruses are able to re-structure chromatin organization and alter the epigenomic landscape of the host genome. In addition, they are able to affect the physical mechanisms shaping chromatin 3D structure, with a consequent impact on gene activity. Here, we investigate with polymer physics genome re-organization of the host genome upon SARS-CoV-2 viral infection and how it can impact structural variability within the population of single-cell chromatin configurations.

View Article and Find Full Text PDF

The nano-self-assembly of natural organic matter (NOM) profoundly influences the occurrence and fate of NOM and pollutants in large-scale complex environments. Machine learning (ML) offers a promising and robust tool for interpreting and predicting the processes, structures and environmental effects of NOM self-assembly. This review seeks to provide a tutorial-like compilation of data source determination, algorithm selection, model construction, interpretability analyses, applications and challenges for big-data-based ML aiming at elucidating NOM self-assembly mechanisms in environments.

View Article and Find Full Text PDF

Experimental and Computational Synthesis of TiO Sol-Gel Coatings.

Langmuir

January 2025

Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

During the experimental formation of sol-gel coatings, the colloid dispersions go through a drying process, and the structure of the coatings is formed as a result of complex chemical, colloidal, and capillary interactions. While computer simulations provide guidelines to tune and even design the nanomaterials synthesis, simulations of coating structure formation are hitherto unknown in the literature. Based on real experiments, we establish here a ReaxFF reactive force field-based molecular dynamics simulation protocol in order to investigate and determine the role of the experimental conditions on the pore structure formation in the coatings.

View Article and Find Full Text PDF

Background: Medical simulation is relevant for training medical personnel in the delivery of medical and trauma care, with benefits including quantitative evaluation and increased patient safety through reduced need to train on patients.

Methods: This paper presents a prototype medical simulator focusing on ocular and craniofacial trauma (OCF), for training in management of facial and upper airway injuries. It consists of a physical, electromechanical representation of head and neck structures, including the mandible, maxillary region, neck, orbit and peri-orbital regions to replicate different craniofacial traumas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!