A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of calcium carbonate particle size on calcium absorption and retention in adolescent girls. | LitMetric

Effect of calcium carbonate particle size on calcium absorption and retention in adolescent girls.

J Am Coll Nutr

Purdue University, Department of Foods and Nutrition, 700 W. State St., West Lafayette, IN 47907-2059, USA.

Published: June 2011

Objective: Increasing calcium bioavailability by decreasing calcium salt particle size in the supplement may be one way to increase calcium absorption. The aim of the study was to compare (1) large versus small particle size CaCO(3) supplements and (2) small particle size CaCO(3) supplement versus placebo on calcium absorption and retention in adolescent girls.

Methods: Thirty-one adolescent girls, aged 11 to 14 years, participated in two 3-week calcium balance periods separated by a 1-week washout period. During both balance periods, the subjects consumed a controlled diet containing 804 mg/d calcium. Using a crossover design, one group (n = 19) received an additional ∼600 mg/d calcium of two ∼300-mg calcium doses as either large particle (18 μm; i.e., standard commercial form) or small particle (13.5 μm) CaCO(3). A second group (n = 12) received ∼600 mg/d calcium from small-particle CaCO(3) or placebo.

Results: The parathyroid hormone suppression curve, following a challenge, from the first arm of the study indicated that calcium absorption from the small particle size CaCO(3) was less than that from the large particle size CaCO(3). The parathyroid hormone suppression curve from the small particle versus placebo arm indicated that calcium absorption from small particle size CaCO(3) was greater than placebo. Calcium balance (Ca intake - [urine Ca + fecal Ca]) demonstrated that the small particle size CaCO(3) supplement increased Ca retention nearly 2-fold compared with placebo (p < 0.05; 496 ± 213 and 256 ± 94 mg/d, respectively). However, there was no significant difference in Ca retention due to small versus large particle size of CaCO(3) (p > 0.05; 349.1 ± 131.6 and 322.0 ± 194.2 mg/d, respectively).

Conclusions: Dietary supplementation with CaCO(3) is effective in increasing calcium absorption and retention compared with placebo. But there is no advantage of small compared with large particle size CaCO(3) on calcium absorption and retention.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07315724.2011.10719957DOI Listing

Publication Analysis

Top Keywords

particle size
40
size caco3
32
calcium absorption
28
small particle
28
calcium
16
absorption retention
16
large particle
16
particle
13
mg/d calcium
12
caco3
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!