The immunomodulatory properties of mesenchymal stem cells (MSCs) make them attractive therapeutic agents for a wide range of diseases. However, the highly demanding cell doses used in MSC clinical trials (up to millions of cells/kg patient) currently require labor intensive methods and incur high reagent costs. Moreover, the use of xenogenic (xeno) serum-containing media represents a risk of contamination and raises safety concerns. Bioreactor systems in combination with novel xeno-free medium formulations represent a viable alternative to reproducibly achieve a safe and reliable MSC doses relevant for cell therapy. The main goal of the present study was to develop a complete xeno-free microcarrier-based culture system for the efficient expansion of human MSC from two different sources, human bone marrow (BM), and adipose tissue. After 14 days of culture in spinner flasks, BM MSC reached a maximum cell density of (2.0±0.2)×10⁵ cells·mL⁻¹ (18±1-fold increase), whereas adipose tissue-derived stem cells expanded to (1.4±0.5)×10⁵ cells·mL⁻¹ (14±7-fold increase). After the expansion, MSC expressed the characteristic markers CD73, CD90, and CD105, whereas negative for CD80 and human leukocyte antigen (HLA)-DR. Expanded cells maintained the ability to differentiate robustly into osteoblast, adipocyte, and chondroblast lineages upon directed differentiation. These results demonstrated the feasibility of expanding human MSC in a scalable microcarrier-based stirred culture system under xeno-free conditions and represent an important step forward for the implementation of a Good Manufacturing Practices-compliant large-scale production system of MSC for cellular therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226421 | PMC |
http://dx.doi.org/10.1089/ten.tec.2011.0255 | DOI Listing |
Stem Cell Res Ther
December 2024
National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.
Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.
Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.
Exp Cell Res
December 2024
Department of Extremity, Hand and Foot Microsurgery, the First People's Hospital of Chenzhou, China. Electronic address:
Background: Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration.
Methods: The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model.
Mol Cell Neurosci
December 2024
Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.
View Article and Find Full Text PDFDev Biol
December 2024
Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.
View Article and Find Full Text PDFHand Surg Rehabil
December 2024
Department of Hand Surgery, Grenoble Alpes University Hospital, 38000 Grenoble, France; TIMC Laboratory, Grenoble Alpes University, Pavillon Taillefer, 38700 La Tronche, France. Electronic address:
New surgical techniques for the treatment of scaphoid non-union, developed in the last two decades, now enable a healing rate of 80-90%. However, no consensus exists for the surgical treatment of non-union. On the other hand, regenerative medicine techniques have enriched the therapeutic armamentarium for non-union, especially in the lower limbs, with the use of autologous concentrated bone marrow injection using autologous osteogenic precursors to create a favorable microenvironment for bone healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!