This study aimed to clarify the basic auditory and cognitive processes that affect listeners' performance on two spatial listening tasks: sound localization and speech recognition in spatially complex, multi-talker situations. Twenty-three elderly listeners with mild-to-moderate sensorineural hearing impairments were tested on the two spatial listening tasks, a measure of monaural spectral ripple discrimination, a measure of binaural temporal fine structure (TFS) sensitivity, and two (visual) cognitive measures indexing working memory and attention. All auditory test stimuli were spectrally shaped to restore (partial) audibility for each listener on each listening task. Eight younger normal-hearing listeners served as a control group. Data analyses revealed that the chosen auditory and cognitive measures could predict neither sound localization accuracy nor speech recognition when the target and maskers were separated along the front-back dimension. When the competing talkers were separated along the left-right dimension, however, speech recognition performance was significantly correlated with the attentional measure. Furthermore, supplementary analyses indicated additional effects of binaural TFS sensitivity and average low-frequency hearing thresholds. Altogether, these results are in support of the notion that both bottom-up and top-down deficits are responsible for the impaired functioning of elderly hearing-impaired listeners in cocktail party-like situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.3608122 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!