Generalized acoustic energy density.

J Acoust Soc Am

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA.

Published: September 2011

The properties of acoustic kinetic energy density and total energy density of sound fields in lightly damped enclosures have been explored thoroughly in the literature. Their increased spatial uniformity makes them more favorable measurement quantities for various applications than acoustic potential energy density (or squared pressure), which is most often used. In this paper, a generalized acoustic energy density (GED), will be introduced. It is defined by introducing weighting factors into the formulation of total acoustic energy density. With an additional degree of freedom, the GED can conform to the traditional acoustic energy density quantities, or it can be optimized for different applications. The properties of the GED will be explored in this paper for individual room modes, a diffuse sound field, and a sound field below the Schroeder frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.3624482DOI Listing

Publication Analysis

Top Keywords

energy density
28
acoustic energy
16
generalized acoustic
8
ged will
8
sound field
8
energy
7
density
7
acoustic
5
density properties
4
properties acoustic
4

Similar Publications

Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution.

View Article and Find Full Text PDF

Fixed-point thickness measurement is commonly used in corrosion detection within petrochemical enterprises, but it suffers from low detection efficiency for localized thinning, limitations regarding measurement locations, and high equipment costs due to insulation and cooling layers. To address these challenges, this paper introduces a wireless passive ultrasonic thickness measurement technique based on a pulse compression algorithm. The research methodology encompassed the development of mathematical and circuit models for single coil and wireless energy transmission, the proposal of a three-terminal wireless energy mutual coupling system, and the establishment of a finite element model simulating the ultrasonic body wave thickness measurement and wireless energy transmission system.

View Article and Find Full Text PDF

Enhanced Localization in Wireless Sensor Networks Using a Bat-Optimized Malicious Anchor Node Prediction Algorithm.

Sensors (Basel)

December 2024

Power Electronics, Machines and Control (PEMC) Research Institute, University of Nottingham, 15 Triumph Rd, Lenton, Nottingham NG7 2GT, UK.

The accuracy of node localization plays a crucial role in the performance and reliability of wireless sensor networks (WSNs), which are widely utilized in fields like security systems and environmental monitoring. The integrity of these networks is often threatened by the presence of malicious nodes that can disrupt the localization process, leading to erroneous positioning and degraded network functionality. To address this challenge, we propose the security-aware localization using bat-optimized malicious anchor prediction (BO-MAP) algorithm.

View Article and Find Full Text PDF

This paper proposes a registration approach rooted in point cloud clustering and segmentation, named Clustering and Segmentation Normal Distribution Transform (CSNDT), with the aim of improving the scope and efficiency of point cloud registration. Traditional Normal Distribution Transform (NDT) algorithms face challenges during their initialization phase, leading to the loss of local feature information and erroneous mapping. To address these limitations, this paper proposes a method of adaptive cell partitioning.

View Article and Find Full Text PDF

In this paper, we investigated the efficient metal-free phosphorus-nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl value and viscosity of the degradation products; focused on the changing rules of the hydroxyl value, viscosity, and molecular weight of polyols recovered from degradation products with different dosages of the metal-free PN catalyst; and determined the optimal experimental conditions of reaction temperature 180 °C, reaction time 3 h, and PN dosage 0.08%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!