The adsorption of a single H(2)O and NH(3) molecule on different fully hydroxylated α-quartz, cristobalite, and tridymite surfaces has been studied at the B3LYP level of theory, within a periodic approach using basis sets of polarized triple-ζ quality and accounting for basis set superposition error (BSSE). Fully hydroxylated crystalline silica exhibits SiOH as terminal groups whose distribution and H-bond features depend on both the considered silica polymorph and the crystallographic plane, which gives rise to isolated, H-bond interacting SiOH pairs or infinitely connected H-bond chains. A key point of the present study is to understand how the H-bond features of a dry crystalline silica surface influence its adsorption properties. Results reveal that the silica-adsorbate (H(2)O and NH(3)) interaction energy anticorrelates with the density of SiOH groups at the surface. This counterintuitive observation arises from the fact that pre-existing H-bonds of the dry surface need to be broken to establish new H-bonds between the surface and the adsorbate, which manifests in a sizable energy cost due to surface deformation. A simple method is also proposed to estimate the strength of the pre-existing H-bonds at the dry surfaces, which is shown to anticorrelate with the adsorbate interaction energy, in agreement with the above trends.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp203988jDOI Listing

Publication Analysis

Top Keywords

h-bond features
12
h2o nh3
12
fully hydroxylated
8
crystalline silica
8
interaction energy
8
pre-existing h-bonds
8
h-bonds dry
8
h-bond
5
surface
5
silica
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!