Characterization of chondroitin sulfate from deer tip antler and osteogenic properties.

Glycoconj J

Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Published: October 2011

Deer antler is a highly regenerative tissue that involves cellular differentiation, osteogenesis and ossification processes. Chondroitin sulfate is the major glycosaminoglycan contained in antler connective tissue and has been isolated from cartilaginous antler by 4 M GuHCl extraction, gradient ultracentrifugation and chromatography techniques. We examined the disaccharide composition by 2-AB labeling and anion exchange HPLC analysis of the three resultant fractions (high, medium and low density fractions). The high density fraction consists of A-unit and D-unit disaccharide in the ratio of 1:1, whereas, the CS disaccharide composition ratio of A- unit:C-unit:D-Unit:E-unit contained in medium and low density fractions are 3:4:3:1 and 2:2:2:1, respectively. The only intact CS oligosaccharides of the medium density fraction upregulated gene expression of bone-specific proteins of a human osteoblastic cell line (hFOB1.19). Thus, CS oligosaccharides from cartilaginous deer antler, with their oversulfated chondroitin sulfate composition, demonstrated the physiological properties and may be good candidates for osteogenetic agents in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-011-9346-1DOI Listing

Publication Analysis

Top Keywords

chondroitin sulfate
12
deer antler
12
disaccharide composition
8
fractions high
8
medium low
8
low density
8
density fractions
8
density fraction
8
antler
5
characterization chondroitin
4

Similar Publications

Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

De novo synthesis of hyaluronic acid with tailored molecular weights using a new hyaluronidase SthHL.

Int J Biol Macromol

December 2024

College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:

Hyaluronic acid (HA) exhibits various biological activities and functions, mainly governed by its molecular weight (M). Traditional HA degradation methods encounter challenges such as environmental pollution and high costs. Thus, developing a safe cell factory with an efficient regulation strategy for one-step production of specific M HA has attracted significant research interest.

View Article and Find Full Text PDF

Melanoma, an aggressive skin tumor, is prone to metastasis, significantly reducing patient survival rates once it occurs. Tumor microvascularity is a key factor in metastasis, making the inhibition of microvascular formation crucial. Emerging photothermal therapy (PTT) and microneedles (MNs) have garnered attention due to their non-invasive and controllable nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!